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Preface 

In this book I address some basic aspects of research design that are central 
and common to many related fields. They are central to the social sciences of 
economics, sociology, psychology, and political science and, more broadly, 
to health sciences, research in education and social welfare, and evaluation 
research in medical and environmental fields. Market research and industrial 
research workers should also be concerned with these problems, as should 
researchers in agricultural economics and production. Admittedly, these 
aspects and problems are less central to laboratory research in physics and 
chemistry and to fields like astronomy. But they are central and common to 
most kinds of research concerned with humans. 

A common core of problems of statistical design exists in all these fields, 
along with many basic similarities in their feasible solutions. Hence a unified 
presentation seems more economical than separate treatments for each field 
would be; such unification also gains additional heuristic strength from many 
fruitful analogies and from the “portability” across fields from examples of 
both successes and failures. 

Among all these fields there exist substantial differences in theory, in 
measurement methods, and in many practical and nonstatistical aspects of 
research designs. All those aspects are better left to separate, specialized 
treatments for each field. But the statistical aspects of design can be better 
perceived and presented within a common framework. That separation of the 
statistical from the other aspects of design defines one boundary for the aims 
of this book. 

Another boundary is imposed by my aim to deal with statistical design, 
but not with statistical analysis; and this distinction explains my selection 
and treatment of topics. Most of statistics+ourses, books, and journals- 
deal primarily or only with analysis and only rarely and little with design; 
they deal with estimation and computation and not with selection and 
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collection. “Given n random cases of some variable” are typical starting 
words for statistical fables, and each word is misleading for real data. Most 
data are not “given”-they have to be taken, enticed, captured, or mined. 
The n is generally not fixed but varies, because of many imperfections in 
collection. The selection is not simple “random,” but clustered and stratified 
or otherwise complex. Also one obtains not true “variables,” but only 
observations subject to errors, which the analyst should recognize and 
control. Such problems are all treated in statistical design. 

Statistical design concerns aspects and problems that belong to statistics 
and to statisticians, because it  and we are (or should be) best equipped to deal 
with them. They are largely omitted from statistical analysis, which is 
organized closely around a mathematical core. The aims and contents of this 
book concern the methods and philosophy of statistics, but they are mostly 
nonmathematical, and that may be why they are largely neglected in the 
statistical literature. 

I suggest that from the ill-defined, broad, and general area of statistical 
design, two well-defined and specialized approaches have been carved out 
and then refined and shaped into mathematical disciplines. Books on modern 
experimental designs began with Fisher [1935], but they all deal almost 
entirely with symmetrical designs for pure experiments. Books on modern 
survey sampling begin with Yates [I949 and 19811, but such books all deal 
almost entirely with descriptive statistics only. (Of course, both fields 
acknowledge earlier ancestors.) Knowledge gained from both fields-gained 
by both me and you the readers-is useful for the ideas advanced in this 
book. But between them both disciplines fail to cover the primary and basic 
aspects of statistical design, so vital in research, that are the subjects of this 
book. 

’We need several more sources of methods to encompass the area of 
statistical designs. The most important sources come from the broad 
literature on observational studies, i.e., controlled investigations, inquiries, 
clinical trials, quasi-experimental designs, etc., diffused in various fields of 
applications, like epidemiology, educational psychology, sociological re- 
search, and recently evaluation research. The authors try to impart their 
accumulated wisdom in teachable capsules, a difficult task because the topics 
are diffuse, compared with the disciplines for the designs of experiments and 
of samples. Such efforts must be made, but only a statistical framework can 
capture the statistical aspects of designing observational studies (Chapter 3). 

How do I hope to add to the literature already available in the three 
disjoint fields? First, I point out and emphasize that choosing among the 
three methods should be a primary statistical decision, based on the three 
criteria of “Representation, Randomization, and Realism” (Chapter I ) .  
Second, by joining together knowledge from the three fields, we build 
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strength from the statistical unity that exists in the three methods. In 
particular, “Analytical Uses of Sample Surveys” (Chapter 2) provides tools 
for the understanding and treatment of observational studies also. Third, 
both the similarities and differences between true experiments and observa- 
tional studies are clarified with a system of modules for sources of bias in 
“Designs for Comparisons” (Chapter 3). This is followed by descriptions of 
designs for “Controls for Disturbing Vairables” (Chapter 4). I have tried out 
these approaches in teaching and used them in practice in designing, 
consulting, and writing research articles. This is also true of Chapters 5 ,  6 ,  
and 7. 

Frankly, I worked hard and long to make this novel book useful not only 
for graduate courses, but also for the reference shelves of researchers, as tools 
for their continuing education, and useful not only for the designers of 
research, but also for consumers of their research designs. Using this book 
should promote mutual comprehension between consultants and consultees. 
“The statistician cannot excuse himself from the duty of getting his head 
clear on the principles of scientific inference, but equally no other thinking 
man can avoid a like obligation” [Fisher 19351. 

I wish to note here several features, some of them unusual, designed for 
the readers’ convenience. The table of contents, with the titles of chapters, 
sections, and subsections, is full and long. It is followed by a novel “chapter 
and section contents,” which presents sentence summaries for all sections. 
This should help readers find topics for reference and help cross-referencing. 
4 t  the back of the book there is a subject index with references to sections. 

it instead of an author index, I have included something I hope is more 
uscful: The long listing of references shows for each publication the 
sections(s) of this book where it was cited. Thus the reader can readily find 
the context of its use and its relation to this book. I have included several 
problems at the end of each chapter. Also tables and figures, most of them 
new, illustrate many of the central aspects, and the figures carry rather full 
explanatory legends. 

The book is organized to facilitate its use for consulting as well as for 
courses in methods and statistics. Within the chapters, sections and even 
subsections can be read separately for specific research problems. For these 
purposes I include some repetitions and many cross-references to related 
sections, often in other chapters. 

For courses, each of the chapters can be used separately and in any order, 
not just successively. They are organized internally, but with many references 
to other sections and to outside sources. Chapter I ,  on the relations between 
surveys, experiments, and observational studies, can supplement courses in 
all three fields, also in statistical methods. Chapter 2, on “Analytical Uses of 
Sample Surveys,” can complement various courses in sampling, experiments, 
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or statistical design. Chapters 3,4,  5 and 6-on “Designs for Comparisons,” 
“Controls for Disturbing Variables,” and “Sample Designs over Time”- 
can fit into various courses on methods. Chapter 5 ,  on “Samples and 
Censuses,” complements courses on sampling. On the other hand, this book 
can also serve as the core for a course on methods, to be supplemented with 
books on experimental designs, observational studies, and other methods. 

Many other topics of design are fitted into appropriate sections of 
Chapters 1-6 and into the six miscellaneous sections of Chapter 7, “Several 
Distinct Problems of Design.” These topics should be sought in the table of 
contents and the index before readers decide that their favorite subject has 
been omitted or treated too briefly. But this may happen. Most obvious is the 
lack of treatment for experimental designs, despite many references and uses 
of its technical terms. Many good books that deal solely with the subject are 
available, all longer than this volume; the topic also appears prominently in 
other books and courses; thus a brief consideration here did not seem 
worthwhile. Survey sampling can also be explored elsewhere, but its 
analytical uses, often neglected, are treated briefly in Chapter 2 and in 
Section 7.1. It was more difficult for me to omit statistical estimation, because 
that is so intimately bound to selection and design. Nevertheless I had to 
omit it, because there is no separating of estimation from analysis and 
computing, and they occupy the vast bulk of statistical learning, of which 
readers must have had modest shares, at least. However, a few simple 
estimation methods are included in Sections 4.5, on standardization; 4.7, on 
ratio estimates; and 7.4, on weighted estimates, because they are often useful 
yet missing from most current treatments. A glossary of terms, always sought 
after, did not seem feasible within reasonable length, because three distinct 
fields of methods for research designs were covered, plus related topics. 

I felt compelled to condense too many ideas on design into a short book, 
so that they will be read, not only written and included. Hence this book may 
seem very “dense” in ideas per page, as two readers remarked. I urge readers 
to persevere; some sections will become clearer on a second or even third 
reading. Some of the contents and ideas will be more novel and controversial 
than students ordinarily encounter in textbooks. Therefore this book needs 
brave and good teachers, prepared with advanced reading of collateral and 
contradictory references, to deal with controversies. But I hope that such 
controversies will be enlightening as well as stimulating and heated. 

Earlier I wanted to provide more than one side of controversial topics, 
and such attempts may interest readers in Sections 1.5, on statistical tests; 
1.7, on representation and probability sampling; 1.8 on model-dependent 
inference; 2.7, on analytical studies; 3. I ,  on substitutes for probability 
sampling; 3.5, on external/internal validity; and 6.1 A, on longitudinal 
studies. But it would more than double the pages to do full justice to two 
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sides on all issues. But most controversies have x sides, x > 2 and variable! 
The readers, students and teachers must supply their own y < x - 1 sides! I 
tried to signal the more controversial items, often by emphasizing the 
personal I .  

In summary, I attempt in this book to claim for statistics the primary and 
most vital aspects of research design. Too often problems reach consulting 
statisticians far too late, after the data have been collected with inefficient or 
faulty designs. But it is also too late, even before collection, if the statistician 
is merely asked to select a sample of n households for one city; or, say, for 
two pairs of treatment plus control cities. By then the primary decisions of 
statistical design will already have been made: method of design, type and 
number of primary units (sites), and number and kind of cases. The crucial 
aspects of statistical design would have been decided, without the valuable 
improvements that statisticians may contribute to the validity and efficiency 
of the design. The chief aim of this book is to bring statistics into those early 
phases of decision making and design. It could be claimed that these topics 
belong to statistical or scientific philosophy. But I have not noted a rush of 
philosophers into the area. 

I have taught, lectured, and written on these topics and for about 13 years 
hesitatingly worked on this book, while collecting more experience and 
material. The vastness and vagueness of the area inhibited my efforts, but I 
was impelled by the need I felt and by the urgings of friends and colleagues. 
Among them I single out two, most often cited here, William Cochran and 
Donald Campbell, who “egged” me on. My wife, Rhea, not only edited it, 
but also made me “live to see the Day.” I was fortunate to have the patience, 
confidence, and support of my editor Beatrice Shube. Katherine Metcalf did 
most of the typing gracefully and skillfully through x + 1 versions of each 
section. I am grateful to all of them. 

LESLIE KISH 

Ann Arbor, Michigan 
January 1987 
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Chapter and Section Contents 

These brief notes should help readers find their way into chapters and 
sections, when the table of contents seems not informative enough. They may 
be useful both before and after reading the chapters. However they hardly 
serve as adequate summaries of the contents, because these are too  varied, 
brief. and dense for condensation. 

1. Representation, Randomization and Realism 
(1) Choice and compromise among the three preceding criteria should be the 
primary act of research design. (2) In addition to two sets of Explanatory 
variables, the Predictors X and Predictands Y ,  three classes of Extraneous 
variables are defined: Controlled C, Disturbing D, and Randomized R. (3) 
Surveys, experiments, and controlled investigations denote three major types of 
designs that excel respectively in each of the three criteria, but neglect the other 
two. In “ideal” experiments all D variables are removed into either C or R.  (4) 
Both randomization over treatments and representation by randomization over 
populations are proposed as due to the same basic problem: relations between the 
Explanatory variables X and Y are always conditional on the elements. ( 5 )  
Statistical tests should be used to separate genuine (population) relations from 
sampling (chance) variations, and not to measure the relations. (6) An ordered 
list distinguishes ten designs from descriptive surveys to confined but true 
experiments. (7) Probability sampling is shown as the prime tool for the broad 
aim of representation. (8) Population-bound inference based on probability 
sampling is compared with model-dependent inference. 

2. Analytical Uses of Sample Surveys 
( 1 )  Four population levels are distinguished by gaps of response and coverage: 
sampled, frame, target, and inferential. (2) Design effects (deft*) of complex 
samples for variances of the means of samples and subclasses are discussed. (3) 
Sample subclasses represent population domains; they are distinguished between 
design classes and crossclasses, and between major, minor, and mini classes. (4) 

xvii 
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3. 

4. 

5. 

Crossclass means and their differences behave regularly: their design effects 
become reduced in proportion to crossclass size from the deftZ for the total 
samplc. (3) Proportionate stratified element sampling (pres) tends to reduce 
variances only slightly, and much less for crossclasses. (6) Clustering increases 
variances, sometimes with large deft2. This deft2 = [ I  + roh (8 - I ) ]  > 1 
depends on the cluster size 6 and on roh, but 6 and deft2 decrease in crossclasses. 
(7) Obstacles to representation for analytical studies are practical and economic, 
ethical and social, mathematical and historical, and only partly philosophical. 

Designs for Comparisons 
( I )  Restricted sites and community studies are substituted for widespread, 
national samples when these seem too expensive, especially for longitudinal 
studies. Several divergent sites can provide internal replication. (2) Principal 
features and limitations motivate the proposed structure of four basic modules 
for research. (3) The four modules are compared with relative costs and variances 
suitable for any sizes n and with four major types of bias. (4) Five basic designs 
are compared: one-shot case study, one-group pre/post, control group com- 
parisons, pre/post control groups, and four-group designs. (5) 22 sources of bias, 
based on Campbell’s 12 threats to validity, are classified into six (the four plus 
two) major types. (6) Responses may be delayed and varied over time, thus 
requiring more than simple, single, before-after tests. (7) Evaluation research is 
new and highly specified in objectives: treatment and response, timing and 
conditions, population. 

Controls for Disturbing Variables 
( I )  Control strategies require decisions on loci of control; on selection or analysis; 
on choice of variables; on numbers of variables and of classes for each. (2) 
Analysis by separate subclasses is most common and simple, but lacks statistical 
aggregation. (3) Case-by-case matching is an extreme control by selection, 
commonly used when control cases are plentiful and accessible. (4) Matching 
subclasses preserves more cases than case-by-case but loosens controls, and 
several compromises exist. (5) Standardization preserves all cases with control in 
analysis, with weights chosen to  reduce biases and variances. lndexes denote 
relative standards. (6) Control of disturbing variables may sometimes be done by 
complex analysis with covariance, residuals, or categorical data analysis. (7) 
Ratio estimates are often used to  adjust for differences and for errors in data, and 
are also ubiquitous in sample survey data. 

Samples and Censuses 
( I )  Researchers from the outside interact with the Census as users, advisors, etc. 
(2) Censuses provide precision for domains and local area estimates, but samples 
are more timely and richer in variables. (3) Samples attached to censuses can 
yield supplements of richer, better data; checks and evaluations; samples for 
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separate analysis; auxiliary data for samples. Censuses, samples, and registers 
can jointly yield postcensal estimates for local areas and small domains. 

6. Sample Designs over Time 
(1) Alternative possibilities for sampling reference dates, for collecting data, and 
for reporting periods exist and need more accuracy in terminology. (2) Five 
purposes (current levels, cumulations, mean changes, individual changes, trends) 
are matched against designs (partial overlaps, nonoverlaps, complete overlaps, 
panels, combinations), distinguished by the amount and kind of sample overlaps, 
which affect variances. ( 3 )  Population changes may be internal, or come from 
external events, or be due to migration, or to boundary changes; each can disturb 
measures of change. (4) Comparing panels to distinct periodic samples results in 
entirely different cost and accuracy conclusions than comparing them to 
retrospective studies. ( 5 )  “Split-panel designs” are proposed to  combine panels 
with periodic distinct samples. (6) Similar data from repeated studies can be 
pooled either by combining summary statistics (e.g., means) or by cumulating 
cases. 

7. Several Distinct Problems of Design 
( I )  For mathematically intractable sampling errors, several alternatives are 
described; methods of repeated replications or jackknife estimators and error 
models seem most useful. (2) Alternative measures for comparisons are possible, 
and the flexibility of the four basic modules allows extensions. ( 3 )  Multipurpose 
surveys lead to conflicts of design; compromises and “optimal” solutions can be 
sought and found. (4) Weighted means are shown as a simple common 
framework for a good variety of selection design problems. (5) Natural 
organizations come in highly variable sizes, and representative sampling has 
interesting aspects. (6) “Falsifiability” is a needed philosophical framework for a 
large variety of design decisions. 
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CHAPTER 1 

Representation, Randomization, 
and Realism 
The statistician cannot excuse himselffrom the duty of getting his head clear on 
the principles ofscientific inference, hut equally no other thinking man can avoid a 
like obligation. R A Fisher, Design of Experiments. 
The diference between cultures is jirst of all the diference in the questions 
permitted. V V Nalimov, Faces of Science. 

1.1 THREE CRITERIA 

Statistical designs always involve compromises between the desirable and the 
possible. We face inevitable compromises in the choice of the very nature and 
the structure of statistical designs; in their scope and breadth; and in the size 
of research projects. Here at the outset we describe the basic compromises in 
the choice of the nature and structure of the research designs. We also need to 
justify and to distinguish the designs for observational studies from the two 
better-known and better-defined fields of survey sampling and of designs for 
experiments. 

The compromises involved in choosing among these three major types of 
designs concern the basic philosophical problems of all empirical sciences: 
how to make inferences to large populations, to infinite universes, and to 
causal systems from limited samples of observations, which are also subject 
to diverse errors and to random fluctuations. We cannot avoid the basic 
philosophical problems posed by David Hume in 1740 and restated by other 
philosophers like Popper [1959], Salmon [1967], and Burks [1977]; and by 
statisticians like Fisher [1935], Neyman [1934], and others (7.6). 

Those problems and compromises always exist implicitly, and sometimes 
they may even appear vaguely in the justifications for using one of the three 

1 
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major types of designs. I propose, however, that they should be treated 
explicitly in the design of any empirical research. An example may be help- 
ful here at the outset. Consider designs for comparing and evaluating the 
relative effectiveness of two or more techniques of instruction in schools. 
First, compromises are generally needed in the realism for the chosen 
“explanatory” variables: the predictor and the predictand variables, i.e., the 
treatment and response variables. The different instructional treatments to be 
compared need to be defined and operationalized; and these tasks will pose 
difficulties and compromises between ideal and feasible techniques. We may 
begin with some conceptualized theoretical underlying variables, but then 
we want to come nearer to the practical realities of eventual and actual 
applications. Meanwhile we may also need to hew closer to the immediate 
possibilities of the experimental situation. We must operationalize and 
control the teaching techniques of the predictor treatments: secure appropri- 
ate materials and adequate psychological settings for them and perhaps also 
recruit satisfactory teachers. However, even greater difficulties and compro- 
mises often arise in designating and operationalizing the predictand vari- 
ables: the criteria for effectiveness of responses. Must we accept simple class 
tests, or even mere opinions and attitudes of teachers or of students? Or 
should we try to measure success in subsequent classes? Or can we possibly 
aim at assessing eventual success in “real” lifetime achievement? 

Second, for scientific reliability we should want randomization of treat- 
ments for subjects, and often this involves great difficulties. It may call for 
great ingenuity and frequently also for compromises. Can we undertake 
true randomization of individual students? Or, more likely, classrooms of 
students? Or must we use entire schools as units of selection? Further, can we 
obtain rigorous controls for the treatments and uncontaminated measure- 
ments for the responses? 

Third, the representativeness of the sampling units usually involves 
compromises both in the designation of the target population and in the 
selection of sampling units from it. What ages and types of students should 
be designated? Should we aim at a national sample or must we be satisfied 
with a smaller area, a county or a city? Or should we try only for several 
contrasting areas, or, contrariwise, should be aim at international com- 
parisons? 

This example illustrates the difficulties of satisfying the three criteria of 
research design to be discussed: realism, randomization, and representation. 
Yet those difficulties are even greater in many tasks facing social research, 
such as evaluating the long-range effects of poverty or of welfare policies. 
Severe compromises must often be made in how we apply the three criteria 
and in how we choose between the criteria. Placing primary emphasis on 
realism, on randomization, or on representation tends to result, respectively, 
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in controlled observational studies, in experiments, or in sample surveys. 
These choices have merely been assumed implicitly (hence largely hidden) 
both in practice and in theoretical treatments, but they are made explicit in 
Section 1.3 in order to clarify the sacrifices involved in the compromises. 

Choices between designs are facilitated by first discussing in Section 1.2 
four classes of variables involved in empirical research. These serve to relate 
the three major criteria just discussed to the three major types of statistical 
design defined in Section 1.3. 

Within each of these basic categories-criteria, variables, and designs-I 
aim for clear definitions with one distinct term serving each major type. I 
chose these terms carefully from good statistical usage. However, we lack 
uniform terminology in statistics, as in philosophy, and especially between 
the sciences of economics, sociology, psychology, health, etc., where they are 
needed and used. I must ask readers to join me in a common vocabulary 
while reading this book, whatever their personal preferences may otherwise 
be. 

I had less than complete success, because common usage forced me to 
make a few terms serve double meanings, usually a specific meaning plus a 
distinct and general usage. Comparison refers to the difference of two means 
(Ch. 3), but also serves in a more general sense, such as in comparisons of 
costs or efficiencies. Control appears in the comparisons of treatment versus 
control, but also in the more general sense of control of disturbing variables 
(Ch. 4). Treatment appears in those comparisons, usually for a new treat- 
ment, whereas control denotes standard and older treatments. But 
treatment/response also denotes predictor/predictand. Of course, we also 
refer often to treatment of a topic, for example, to denote attention and 
discussion. 

1.2 FOUR CLASSES OF VARIABLES 

( E )  The explanatory variables are the objects of the research design. They 
are sometimes called experimental variables, whereas explanatory has 
sometimes been used for what I shall denote as predictor variables. 
Here explanatory denotes those variables that embody the aims of 
the research design, among which the researcher wishes to find and 
measure some specified relationships. The explanatory variables com- 
prise two distinguishable sets: the predictor ( X )  variables comprise the 
sought causes of the relationships and the predictand ( Y )  variables 
describe the predicted effects. Other name have been used for these two 
sets of variables: independent and dependent, stimulus and response, 
treatment and criteria, cause and effect, X and Y-as well as other 
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pairings of these terms. Determinants and consequences have also been 
used, especially in demographic research. We are not obliged to explore 
here the subtle philosophical distinctions between these pairs of terms. 
The terminology lacks uniformity and I shall opt for neutral terms. 
Furthermore, in observational studies and in surveys, the differen- 
tiation of explanatory variables into predictors and predictands may 
be more or less arbitrary. 

The explanatory variables that comprise the aims of research are desig- 
nated first on the basis of substantive, scientific theories; they arise from 
knowledge of and insight into the field under study. Inevitably, however, the 
potential existence of other, extraneous sources of variation must also be 
recognized. Then methods must be devised for separating these extraneous 
variables from the explanatory variables. Sorting all the diverse extraneous 
variables into three classes seems a useful simplification. Furthermore, no 
confusion need arise from talking here about “variables” instead of 
“sources” of variation. The explanatory variables ( E ) ,  predictors ( X ) ,  and 
predictands ( Y ) ,  embody the aims of the research, and the other three classes of 
variables are extraneous to those aims (see Figure 1.2. I ) .  

Controlled variables comprise those extraneous variables that can be 
controlled adequately by the research design. Control may be exercised 
either by design of the selection procedures or by estimation techniques 
in the statistical analysis, or perhaps by both. The choices depend on 
foresight and knowledge, but also on the availability and strategical use 
of data and of resources. Techniques for controlling extraneous 
variables are aimed at decreasing random errors (class R),  or decreas- 
ing the biasing effects of disturbing variables (class D), or both. 
Disturbing variables are uncontrolled extraneous variables, which may 
be confounded with the explanatory variables (class E) .  Failure to 
remove all of these D variables either into class C of controlled 
variables or into class R of randomized variables is the primary 
disadvantage and concern of nonexperimental designs. 
Randomized variables are uncontrolled extraneous variables that are 
treated as random errors. In “ideal” experiments they are actually, 
operationally randomized, but in surveys and investigations they are 
only assumed to be randomized-as discussed in 1.4. Randomization 
may be viewed as a form of experimental control, but distinct from the 
forms used for class C variables. 

With eficient designs we aim to place into class C (controlled variables) as 
much of the extraneous variables as seems feasible, practical, and economi- 
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Observational 
study 

Extraneous variables 

IRandomized = RI Controlled = C Disturbing = D I Predictant = Y *  

- I  -- 
Target 

parameters 
Predictors = X 

Experiment X I 
Figure 1.2.1. Effects of three classes (C, R,  D )  of extraneous variables on  the explanatory ( E )  
variables ( X  --t Y ) .  

Three types of extraneous variables may disturb the path of the explanatory ( E )  variables, 
from predictor ( X )  to predictand ( Y ) .  Some variables are controlled (C) with various kinds of 
controls (blocking, stratification, matching weighting, etc.). Others are randomized (R) in 
experiments, or treated as randomized in surveys and observational studies. However, some 
effects remain as  disturbing ( D )  variables in surveys and in observational studies, but none of 
these remain in “true” experiments. 

Arrows going up and down signify the conflicting effects of extraneous variables. Controlled 
variables are shown thicker than disturbing variables, in the hope that the strongest variables get 
controlled by the design. The randomized variables are shown as  numerous, weak, and acting in 
both directions, tending to cancel; their effects on  the ( X  -P Y )  paths are shown as  relatively 
weak. 

Experiments are shown as most tightly controlled; and sample surveys as  much less so; but 
they can represent broader population bases that cover several domains, as shown by the three 
( X  --t Y )  paths, a, h, c .  

However, the predictands Y of experiments are shown as  much further from the target 
parameter Y* that represents the ultimate response/eITect the study attempts to predict/estimate. 
Those gaps refer to the relative lacks of “realism” of study designs. 

cal. However, it is not possible or practical to control more than a few of the 
potentially disturbing variables, and some, or most, must be left uncon- 
trolled. The aim of randomization in experiments is to place all class D 
variables into class R. In the “ideal” experiment there are no variables left in 
class D; all extraneous variables have been either controlled in class C or 
randomized in class R .  By placing disturbing variables into class C we 
eliminate the effects they would have in class R .  Though random errors are 
left in class R, biases due to class D are eliminated in “ideal” experiments. 

However, in nonexperimental research-in surveys and in investi- 
gations-controls must do double duty. They increase efficiency by reducing 
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the errors from class R variables, as they would in true experiments. But 
without randomization we cannot eliminate completely all disturbing vari- 
ables from class D. To the extent that they remain neither completely 
controlled in class C nor randomized in class R ,  the variables of class D 
remain mixed, confounded with the explanatory variables of class E, with 
unknown biasing effects on them. Hence the reduction of those biases 
becomes the crucial function of controls in nonexperimental research. 

1.3 SURVEYS, EXPERIMENTS, AND CONTROLLED 
INVESTIGATIONS 

Experimental designs have been developed to test and ascertain explanatory 
variables and to measure relationships between them in analytical probings 
of data. Separately and distinctly, the theory of survey sampling has been 
developed chiefly to provide descriptive statistics, means, proportions, and 
totals-particularly for large samples from much larger populations. How- 
ever, survey data are used frequently and successfully, especially in the social 
sciences, for statistical and analytical research into relationships among 
explanatory variables. Furthermore, neither experiments nor sample surveys 
are feasible or practical in many situations, and controlled investigations and 
observational studies of some kind must be often used. The theoretical 
development of each of these three types of designs has been made in 
splendid isolation, in order to simplify and clarify them. The connections and 
contrasts between them have not been much explored, but we are about to 
embark on that exploration. 

By experiments I mean here “ideal” experiments in which all the 
extraneous variables have been either controlled or randomized (1.4). By 
surveys (or sample surveys), I mean probability samples in which all members 
of a defined population have a known positive probability of selection into 
the sample (1.7). By investigations (or controlled investigations), I mean the 
collection of data-with care, and often with considerable control-without 
either the randomization of experiments or the probability sampling of 
surveys (Ch. 3 ) .  The differences between experiments, surveys, and investi- 
gations are not the consequences of statistical analysis, which may be similar; 
they result from different designs for introducing the variables and for 
selecting the population elements (subjects). 

In considering the larger ends of any scientific research, only part of the 
total means (i.e., resources) required for inference can be brought under 
objective and firm control; other parts must be left to more or less vague and 
subjective-however skillful--judgment. Scientists seek to maximize the first 
part and thus to minimize the second. In assessing the ends, the costs, and 
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Experiments 

Survey samples 

Controlled Local studies Registers 
observations 

Figure 1.3.1. Three different comparisons of survey samples. 
Comparisons of survey samples with experiments and with controlled observations are 

discussed in this section (1.3). These three methods are justified as preferred strategic choices for 
the three criteria of representation, randomized treatments, and realism. Another kind of 
strategic choice involves the relative advantages of sample surveys against censuses or registers 
(5.2). Still another comparison concerns the choice between widespread sample surveys and local 
studies confined to one or a few sites (3.1).  Thus sampling surveys are shown as alternatives to 
three distinctly different methods of data collection, and that is the only reason for their central 
position in the figure. 

the feasible means they make a strategic choice of methods. Thus they are 
faced with the three basic problems of scientific research: randomization, 
representation, and the realism of measurements. 

Experiments are strong on control of the explanatory variables through 
the randomization of predictor variables over subjects (i.e., subjects over 
treatments); but they are weak on representation over defined target 
populations, and often also on the realism of measurements. Surveys are 
strong on representation, but they are weak on control of variables. 
Investigations are weak on control and often on representation; their great 
prevalence is due often to low cost and relative convenience, and at  times to 
the need for and feasibility of realism of measurements in “natural settings.” 
We are faced usually with conflicts between desires for randomization, for 
representation, and for realism. It is seldom that desires for all three criteria 
can be satisfied adequately in one research design, and very often desires 
cannot be satisfied for even two of the three. More often people merely 
emphasize one criterion because it is least costly and most convenient, and 
because it may appear on theoretical grounds-convincingly or only 
hopefully-the most justified. But when hope or wish is the father of the 
thought, the offspring may be illegitimate. The criteria that must be sacrificed 
must be considered more thoroughly. We ask for a greater role for explicit 
models of the diverse sources of variation that arise in the three types of 
research designs (see Figure 1.3.1). 

Experiments have three chief advantages: (1) Through randomization of 
extraneous variables the biases from disturbing variables (class D )  can be 
eliminated. (2) Controls over the introduction and variation of the predictor 
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variables clarify both the direction and the nature of causation from 
predictor to predictand variables. In contrast, for relationships found in 
survey results, that direction and that nature are not clear. (3) Modern 
designs of experiments allow for great flexibility, efficiency, symmetry, and 
powerful statistical manipulation, whereas the analytical use of survey data 
presents difficult statistical problems (2.7 and 7. I) .  

The advantages of the experimental method are so well known that we 
need not dwell on them here. It is considered the scientific method par 
excellence-when feasible. In many situations experiments are not feasible, 
and this is often the case in the social sciences, because predictor variables 
cannot be assigned freely to subjects for several reasons. ( I )  It is impossible 
to assign predictors like age, sex, religion, I.Q., and even income and 
education in most cases. (2) It is unethical to assign predictors like smoking, 
drug abuse, and even a new medicine or placebo in some situations. (3) It is 
impractical to assign a new teaching method to separate students within 
classes, or management styles to separate employees within workgroups, etc. 
Yet it is a mistake to use these situations to separate the social from the 
physical and biological sciences. Such situations also occur frequently in the 
physical sciences (in meteorology, astronomy, geology), in the biological 
sciences, and in medicine, engineering, manufacturing, business, etc. (1.4). 

Even where feasible, the experimental method may also have short- 
comings that must be either overcome or tolerated. First, often it may be 
difficult to choose and operate the control variables; it may be difficult or 
impossible to design an “ideal” experiment. Newspapers bring frequent 
reports of successes with new drugs and cures that later may be either denied 
or forgotten. We shall discuss later (Ch. 4) the need for and difficulties with 
proper controls, and readers have their own ideas and examples. Here we 
merely mention the use of placebos to hide treatments from subjects and of 
“double-blind clinical trials” to hide them both from subjects and from 
researchers (1.4). We shall refer to the famous Hawthorne experiments with 
workers (3.6) and to the great Pavlov with his dogs. 

In actual experiments the “ideal is not reached easily, hence the distinction 
between all experimental and nonexperimental research is not absolute. 
Troubles with experimental controls misled even the great Pavlov into believing 
temporarily that he had proof of the inheritance of an acquired ability to learn: 
‘‘In an informal statement made at the time of the Thirteenth International 
Physiological Congress, Boston, August, 1929, Pavlov explained that in 
checking these experiments it was found that the apparent improvement in the 
ability to learn on the part of successive generations of mice was really due to 
an improvement in the ability to teach on the part of the experimenter” 
[Greenberg, 1929, p. 3271. Nevertheless the distinction is real and worthwhile. 
Hence Sir Austin Bradford Hill overstates his good case by saying: “the 
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difficulties of experiments are no less,” when discussing the difficulties of 
observational studies [in Cochran, 19651. [Kish 1959, 19751 

Thus, the advantages of experiments over surveys, in permitting better 
control of treatments, are only relative, not absolute. The design of proper 
experimental controls is not automatic; it is an art requiring scientific 
knowledge and foresight in planning the experiment, and hindsight in 
interpreting the results. Nevertheless, the distinction in control between 
experiments and surveys is real and considerable. To emphasize this 
distinction we refer here to “ideal” experiments in which the control of 
biases from disturbing variables is complete. 

Second, it  is generally difficult to design experiments so as to represent 
a specified important population. In fact, the questions and problems of 
sampling, i.e., of the representation of specified populations in experimental 
results, have been largely ignored in experimental design. Both in theory 
and in practice, experimental research has often neglected the basic truth 
that causal systems, the distributions of relations-like the distributions 
of characteristics-exist only within specified universes. The statistical 
inferences derived from the experimental testing of several treatments are 
restricted to the population(s) included in the experimental design. However, 
they must receive much broader applications, and for that purpose we must 
resort to models either explicitly or-too often-only implicitly. These 
controversial issues are treated briefly below (1.4 and I .8). 

Third, for many research aims, especially in the social sciences, contriving 
the desired realism of a “natural setting” for the measurements is not 
feasible in experimental designs. Hence social experiments sometimes give 
answers to questions that have only vague meanings. That is, artificially 
contrived experimental variables may have only tenuous relationships to the 
variables the researcher would like to investigate. 

The second and third weaknesses of experiments point to the advantages 
of surveys. Not only do probability samples permit clear statistical inferences 
to defined populations, but the measurements can often be made in the 
“natural settings” of actual populations. Thus in practical research situations 
the experimental method, like the survey method, has its distinct problems 
and drawbacks as well as its advantages. 

In social research some designs of controlled investigations are frequently 
preferred over both surveys and experiments and are chosen-for reasons 
of cost, or feasibility, or the preservation of the desired realism of the 
measurements. Ingenious adaptations of experimental designs have been 
contrived for these controlled investigations (Ch. 3). The statistical frame- 
work and analysis of experimental designs are often used, but without the 
randomization of true experiments. Great ingenuity is often needed in these 
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designs to provide flexibility, efficiency, and especially some control over the 
extraneous variables (Ch. 4). Controlled investigations take many forms and 
have many names: observational studies, controlled observations, quasi- or 
pseudo-experiments, natural experiments, and so on. I prefer not to borrow 
the prestige word experiment for studies where the predictors are not 
randomized, and prefer to avoid terms like ex-post-facto experiments, that 
confuse more than help. Controlled investigations and sample surveys are 
not merely second-class experiments; they have their own justifications. 

In practice we usually lack the resources to overcome all difficulties, and 
thus to achieve simultaneously the perfection of realism of measurements, 
of randomization to control treatments, and of representation over large 
populations. Let us agree that often, even usually, we cannot satisfy all these 
three criteria simultaneously. After admitting that much, however, many 
writers proclaim an overall hierarchy among these criteria, so that one 
criterion is paramount in all situations. For example, some believe that 
randomization of treatments (or “internal validity”), when possible, must be 
had at all costs, before considering representation over populations (or 
“external validity”) or realism. On the contrary, I believe that there is no 
supercriterion that would lead to a unique, overall, and ubiquitous superior- 
ity among the three criteria. Rather, one must choose and compromise with a 
research strategy so as to fit our resources to the situation at  hand. In any 
specific situation one method may be better or more practical than the others; 
but there is no overall superiority in all situations for any of the three designs. 
Understanding the advantages and weaknesses of each should lead to better 
choices. Sometimes, a slight relaxing of one criterion can lead to large gains 
in one or even in both of the other two criteria. Furthermore, some great 
research problems need to be attacked separately with two or with all three 
methods. 

These antihierarchical views on strategy are in partial disagreement with 
some of the best writing on controlling variables in social experiments and 
investigations by Campbell [I9571 and Campbell and Stanley [1963], with 
which the reader should be acquainted (see end of 3.5). 

Each of the three kinds of design can be improved with efforts to 
overcome their specific weaknesses. Because the chief weakness of surveys is 
lack of control over treatments, survey researchers should improve their 
collection and their use of auxiliary variables as controls against disturbing 
variables. They should become more alert to social changes and use them 
to measure the effects of “natural experiments.” They should more often 
explore survey data with analytical, multivariate techniques-a trend well 
under way now. 

On the other hand, experiments and controlled investigations can often be 
improved with efforts to specify their populations more clearly and to make 
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their results more representative of the populations. Often more can and  
should be done to broaden the design base to facilitate statistical inference to 
wider and more significant populations. Researchers too often and too early 
commit themselves to  small, convenient, or captive populations. Too often 
the researchcr justifies those restrictions as attempts to make the subjects 
more “homogeneous.” If common sense will not dispel this error, reading 
R A Fisher may. 

We have seen that the factorial arrangement possesses two advantages over 
experiments involving only single factors: (i) Greater ejiciency in that these 
factors are evaluated with the same precision by means of only a quarter of the 
number of observations that would otherwise be necessary; and (ii) Greater 
comprehensiveness in that, in addition to the 4 effects of single factors, their 
1 1  possible interactions are evaluated. There is a third advantage which while 
less obvious than the former two, has an important bearing upon the utility of 
the experimental results in their practical application. This is that any 
conclusion, such as that it is advantageous to increase the quantity of a given 
ingredient, has a wider inductive basis when inferred from an experiment in 
which the quantities of other ingredients have been varied, than it would have 
from any amount of experimentation, in which these had been kept strictly 
constant. The exact standardization of experimental conditions, which is often 
thoughtlessly advocated as a panacea, always carries with it the real disadvan- 
tage that a highly standardized experiment supplies direct information only in 
respect to the narrow range of conditions achieved by standardization. 
Standardization, therefore, weakens rather than strengthens our ground for 
inferring a like result, when, as is invariably the case in practice, these 
conditions are somewhat varied. [Fisher, 1953, p. 991 

The researcher should view the population base in terms of cost factors 
and components of variation; then broaden the base of statistical inference as 
much as the resources allow (3.1 and  7.6). 

1.4 
OVER POPULATIONS 

RANDOMIZATION OF SUBJECTS OVER TREATMENTS AND 

Under this title I shall discuss the needs for randomization and for 
representation as two related aspects of research design. Even more than 
related, I propose that those two needs have common theoretical, philoso- 
phical roots. To recognize those common roots honestly is important; but it 
is also difficult, because in practice we usually must make choices between the 
two needs, sacrificing and compromising between them for economic and  
strategic reasons, as discussed in Section 1.3. 



12 1.  REPRESENTATION, RANDOMIZATION, AND REALISM 

The needs for randomization of treatments and for representation are 
usually treated separately. I assume that readers are acquainted with some of 
the arguments for both, and they will find other support in Chapters 2 and 3. 
The arguments for randomized treatments in experiments and for proba- 
bility selections in sample surveys are both strong-and we must recognize 
them even when we see them so often sacrificed for reasons of cost and 
feasibility. 

That the two kinds of randomization have common theoretical roots is 
not commonly recognized. But that view is important not only for a clearer 
philosophical understanding, but also for several practical reasons in the 
design for most research. First, the very choice between major design types, 
especially between experiments and surveys, should not be arbitrary; we 
should consider not only relative feasibilities and costs but also the nature 
and scope both of gains and of sacrifices in inference with each kind of 
design. This has been our theme in Sections 1.1-1.3. Second, this view 
provides the thrust for extending the scope of representation for experiments, 
so as to facilitate broader inferences from experiments (3.1 and 7.6). Third, 
this view motivates the analytical uses of sample surveys (2.7 and 7.1). 

The practice and theory of survey sampling recognize that it must deal 
with populations of elements with fixed values Y,,  whose distributton is 
unknown; that it cannot simply assume its sample values to be “1.I.D.r.v.” 
(independently and identically distributed random variables). Hence we use 
randomization over the population of elements in order to obtain probability 
selections of elements into the samples. The values of statistics (such as the 
sample mean ,i for estimating the population parameter r = C Y , / N )  depend 
on the selection, with known probabilities, into the sample of some of the N 
population values Y,(i = I ,  2, 3, . . ., N ) .  

Now I propose that the sampling view is philosophically valid and 
necessary not only for single variables but also for relations between two or 
more variables. Classical models for relations between random variables 
disregard the necessity for population bases for the physical, biological, or 
social subjects of the real world. We survey samplers propose a popufution- 
bound approach instead of the model-based classical approach. The terms 
design-bused, randomization, and empirical also appear for the population 
approach, and populationyfree, model-dependent, and mathematical can also 
describe the classical model approach. But I propose the preceding neutral 
terms, because all approaches must use models and mathematics, and 
because mathematics and models need not be population free, and I propose 
they should not be (1.8). 

Using a population-bound approach, we note that in the real world the 
relations between variables are properties of specific subjects that are the 
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elements of defined or definable populations. Although we may imagine, 
talk, and write about relations between variables, and between random 
variables, for empirical research those relations must be eventually translated 
and attached to population elements. Such attachment is necessary at  both 
ends of any empirical research process: first when making observations 
(whether in surveys or in experiments) and last in making inferences. Only 
during the intervening mathematical analyses can the linkage be neglected. 
The linkage is neglected also during abstract discourses about theory that can 
be both population-free and data-free; and those discourses show vast gaps 
between statistical theory and practice. 

Therefore I suggest we remember that all relations in the physical world 
between predictor and predictand variables are conditional on the elements of 
the population subjected to research. All relations of stimulus to response are 
dependent on  the subjects involved. That the stimulus-response relation 
is not constant, not uniform, not deterministic should be obvious in all 
observations-or we would not need statistics. The inherent variations in 
those relations result in errors that are not small enough to be negligible. 
Furthermore, the errors are not purely, simply random-in other words, not 
independently and identically distributed (1.I.D.)-and that is why we need 
randomizations both over treatments and over populations. 

A modest use of symbols will help here. A value of the ith element in the 
population of N elements can be written as Yi = Y + dj around the 
common mean ? = C Y i / N .  This we try to estimate with the sample mean 7 
with a standard error, which is a function of the di and of the sample design 
for selecting them. Furthermore, the Yi may also represent vectors of the 
many variables measured in most surveys and each with its mean Y and its 
own distribution of deviations di .  

These deviations have diverse complex distributions not only with regard 
to the overall frequency curve of the values of di but also in their spread 
within the populations: The populations generally are not “I.I.D.,” like a 
“well-churned urn.” Probability selection with randomization over the whole 
population is the accepted sampling strategy for dealing with these problems, 
the chief of which concerns the avoidance of large biases due to sample 
selection (1.7). The effects of diverse complex sample designs is the subject of 
survey sampling (Ch. 2 ) .  Those effects are ubiquitous and widely docu- 
mented for means. They are also documented for other statistics, such as 
comparisons and analytical relations (7.1). We now look at their sources. 

When a treatment effect T, or This introduced, it is simple and tempting to 
assume Y,; = + Tt + di, where t is either a or b for two treatments; such 
assumptions are commonly made implicitly. Simple as it is, this amounts to 
assuming that the effect T, of treatment t is constant across elements. But if 
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we believe that the treatment-effect (stimulus-response) relation may de- 
pend on the element (subj?lc.:t), then we should write Y,i = r + Tli + di,  so 
that the effect TIi depends on both the treatment t and the element i .  

If we wish to write Yli = Y + TI + eli ,  where T, is a mean response to 
treatment t ,  then we must remember that the error term eti may depend on 
both the treatment t and the element i. Those who would write Yli = Y + TI 
+ ei must remember and must warn that the ei not only depend on the 
elements, but also are specific to the treatment, or use ai or bi for treatments a 
and 6 .  

The classic model of Y, = Y + TI + e,  with one common distribution for 
the errors e, disregards both the interactions between treatments and 
elements and the variations among elements. These models are based on 
strong assumptions; and to counter possible biases, randomization has been 
introduced into modern experimental designs. Randomization of subjects over 
treatments is the strategy for eliminating biases in measuring treatment effects 
due to selection between the experimental subjects. This randomization 
counters biases, by averaging differences between treatments over subjects 
(eIi ) ,  both in basic elemental levels (di)  and in interactions (T,J with 
treatments. However, that strategy and the model deal with “internal 
validity” within the experimental groups only within the scope of the 
experiment. That strategy of randomization of subjects within the experi- 
mental groups fails to deal with the differences of subjects eli outside (beyond) 
the groups, thus with the “external validity” of experiments (3.5). 

It would be philosophically difficult to believe that subject differences eli 
within experimental groups would not also exist between potential groups; 
and the literature contains evidence of diverse and even conflicting results 
between experiments. To summarize: Treatment-effect relations depend on 
subjects; hence those relations are not randomly (I. I. D.) distributed; hence 
inferences to populations depend on representation. Nevertheless, representa- 
tion through randomization of experiments over populations is a problem 
that is commonly ignored or avoided. The two kinds of randomization are 
usually treated separately and sometimes even in opposition to each other. 
Hence I cannot support the arguments above with references and I must 
appeal directly to the reader’s understanding (1.7, 1.8, 2.7, 3.1). 

This subject-dependence of stimulus-response relations has been re- 
cognized in biological and social research, though it is often still neglected. 
Standard mice and rabbits are bred and used in order to control the 
susceptibility of the subjects of research in experiments on cancer and other 
diseases. In chemical and physical experiments standardized materials and 
conditions are used; their purity and precision are important aspects of those 
experimental sciences. But further inference to the worlds outside the 
laboratories needs considerable further research in chemical engineering, 

1. REPRESENTATION, RANDOMIZATION, AND REALISM 



1.4 SUBJECTS OVER TREATMENTS AND OVER POPULATIONS 15 

geology, metallurgy, etc. On the other hand, for social research on human 
subjects such separation of standard subjects under purified conditions is not 
feasible, nor would it be useful. (See again R A Fisher in 1.3.) 

For realism and completeness we should also add the environment (or 
condition, situation, etc.) as conditioning factors for relations between 
variables. We would then formulate the conditioning (dependence) of 
relations on elements (subjects) and on the environment as: 

(predictors 4 predictand)lelement, environment 
or 

predictand = f(predictors I element, environment). 

For brevity the effects of environment may be subsumed under the mantle 
of predictors, or they may be included in the definition of elements, but we 
must always remember that the same elements may have different 
predictor-predictand relations in diverse circumstances. For spectacular 
examples note that the genes that cause sickle cell anemia had been beneficial 
in malaria-ridden environments. Also genes that cause diabetes may have 
been useful to tribes that had to endure frequent periods of hunger. 
Moreover, growing up to be the size of dinosaurs had survival value for 
reptiles for 100 million years. In the social sciences examples occur daily of 
the importance of culture and society on individual responses; the readers 
can supply them from their own experience or reading. 

It may be useful to repeat the above in symbols. The classical formulation 
may be put either generally or for a linear regression as, respectively, 

Here e is the term for errors, and they are assumed to be independently and 
identically distributed (I.I.D.), with perhaps a known, usually normal, 
distribution. [Without the error term y = f ( x )  with e = 0, and we would 
have a deterministic model without need for statistics.] Against population- 
free models in (1) we propose population-based models, with the subscript i 
denoting individuals, as 

yi = f ( x , )  + ei and yi = 6 ,  + b , x ,  + b,x,  . . . bkxk + ei, (2) 

with ei(i = 1, 2, . . . , N )  being distributed over the N values of the popula- 
tion elements. This extends the earlier simple case for single variables when 
y ,  = ho + ei or Yi = + ei. The distribution of the pi, not completely 
known, is over a specified population. The definition of the population 
includes the environment, and the values of the bg are conditional on it. 
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The values of the el depend on the elements, and accepting this limitation 
leads to the necessity for randomization of subjects both over treatments 
(predictors) and over the population of elements. Population randomization 
is the subject of survey sampling, as treatment randomization is of experi- 
mental design. Here we note the common roots of both (1.7, 1.8, 2.7). 

From accepting distinct values of el for the elements the need for 
randomization of treatments follows as strategy against the biases in 
treatment means that would arise from the selection of subjects into 
treatment groups. Then randomization over the population is needed as 
strategy against biases in the selection of subjects, since we cannot assume 
that the their e, values have been randomized over the population. 

Why randomize? This question still provokes many theoretical discussions 
and differences that are much too profound for us here. But there is a great 
deal more agreement in the practice of good statisticians. Thus I shall risk a 
summary that is both simple and sound. ( I )  Probability and statistical theory 
are based on random variables. (2) Populations, physical universes do not 
come to the researcher prerandomized. Gross irregularities and clustering 
characterize the populations of social research. (I believe this is generally true 
throughout nature.) (3) Therefore researchers must accomplish what nature 
did not: Randomize their samples. (4) This can only be done with mechanical 
randomization, such as tables of random numbers [Kish 1965, 1.71. (5) Thus 
point 4 follows because the haphazard choices of human selectors are not 
random, even when they are honestly trying. 

This last point (5) brings me back to point (I), because random variation 
is also needed for the Laws of Large Numbers, so that statistics j approach 
the parameters Y asymptotically. Trials have shown that human judgment 
produces biased results even for simple tasks, tasks much simpler than 
selecting humans for random behavior and attitudes. Thus for selecting 
stones from a pile, a relative bias of ( j j  - Y ) / Y  = (2.34 - 1.91)/1.91 = 0.22 
was found (in ounces). Similar biases were found for selecting, for example, 
heights of wheat shoots. Furthermore, the biases are not reliable: They vary 
between observers, between dates of similar experiments, and between 
situations. Judgment selections tend toward the middle, avoiding extremes; 
therefore means of judgment samples have smaller “mean square errors” 
(7.1E) than random samples for very small samples (5 or lo?) [Yates 1981, 
2.4-2.5; Yaks 1935; Jessen 1978, 1.6; Sukhatme 1947; Sukhatme 1954, 1.81. 
Furthermore, sophisticated, “statistical” balancing methods are also biased, 
as was shown by the early classic of modern sampling [Neyman 19341. The 
need for randomization of treatments, even for “double-blind clinical trials,” 
is discussed later (3.5). 

Finally, we must admit two basic justifications for the absence of broad 
representation for experiments. First, i t  is extremely difficult to achieve; the 
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polio vaccine experiment over the United States was a rare but interesting 
exception [Meier 19721. Second, many experiments yield useful results even 
from small isolated groups. The simple classic model Y, = + T, + e,  
though philosophically naive, often yields reasonable results, especially with 
replications (2.7, 3.1, 7.6). 

1.5 STATISTICAL TESTS 

The term statistical tests refers here briefly and collectively to statistical 
measures of random variability, whether tests of significance, confidence 
intervals, fiducial or credible intervals, or whatever. The function of 
statistical tests is to distinguish the explanatory effects of class E variables 
from the random effects of class R variables, for which the tests are designed 
to make allowances at specified levels of probability. In “ideal” experiments 
this separation of E from R is accomplished through randomization of all 
extraneous variables in class R,  except for those controlled in class C, hence 
with no disturbing variables left in class D. 

However, in nonexperimental research the explanatory variables of 
class E are confounded with disturbing variables of class D. Therefore in 
these cases statistical tests actually contrast the effects of the random errors 
of class R against the explanatory variables of class E confounded (mixed) 
with unknown effects of class D variables. For this reason the control and 
segregation of disturbing variables into class C becomes doubly important in 
nonexperimental research. Controls decrease random errors here also, but 
more important, they decrease the possible biasing effects of disturbing 
variables on the explanatory variables. Note the weak verb decrease, because 
the stronger eliminate (often used) would represent our aims but not what 
can be typically achieved in practice. Further, the adjective possible also 
refers to our uncertain knowledge about the actual sources and sizes of 
biasing effects (Ch. 3 and 4). 

Suppose, for example, that in a study of schools a criterion (predictand) 
variable y appears to be related to treatment (predictor) variable x. The 
criterion may define test abilities or even much later occupational success; or 
it may define merely student attitudes and satisfactions. The treatments may 
measure the nature of instruction or of class organization in the schools. 
Suppose for simplicity that when schools are sorted into types A and B 
according to the treatment x, type A schools have a higher average of the 
criterion of success y than type B schools. The observed difference in success 
may be denoted as (Y, - Yh).  But there also exists variation in success 
between schools within each type, and a statistical test is conducted to 
measure the effect of that variability; this is often measured with the standard 
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error of the difference, denoted by ste(j7, - y b ) .  A statistical test can show 
whether the difference ( j ,  - yb)  between the two types of schools should be 
reasonably considered as a chance occurrence when compared with the 
measure of random variability denoted by ste(7, - Y b ) .  If the difference 
(F(, - < j b )  appears relatively large (i.e., “statistically significant”), we may 
conclude that the difference found in the research is not likely to be due 
merely to the random errors of class R variables. 

When the assignment of schools to treatment types A and B is ran- 
domized, a “significantly” large difference ( j ,  - j b )  can be reasonably 
attributed to the effects of the two types, A and B, of randomized treatments. 
However, in nonexperimental research, in surveys and investigations, the 
treatment types are not assigned at random. Hence the difference ( j ,  - yb),  
when found to be beyond random variability, cannot be clearly and directly 
attributed to the difference between the two types of treatments defined by 
predictor variables. Disturbing variables of class D may also be confounded 
(mixed) with the defined treatments. For example, the salaries of teachers 
and the socioeconomic level of students may also differ between the two 
types; these differences may account for some or all of the difference 
(V“ - Y b ) .  

The researcher may try to remove the effects of disturbing variables with 
various methods of control (Ch. 4). These attempts at  controlling for class D 
variables can be followed with further statistical tests. The separation of 
class E from class D variables should be determined in accord with the 
nature of the hypotheses with which the researcher is concerned. But that 
separation is beyond the functions and capacities of statistical tests of 
“significance.” Their function is not explanation; they cannot point to 
causation. Their function is to ask, “Is there anything in the data that 
needs explaining?” Is the difference (or relationship) great enough to place 
confidence in the result? Or contrarily, may the latter be merely due to 
chance fluctuations in the specific samples on which the test was made? 
And they must answer such questions with designated probability. 

It is incorrect to allege that “tests of statistical significance are inapplicable 
to nonexperimental research.” This allegation was clearly expressed by 
Selvin [ 19571: 

The basic difficulty in design is that sociologists are unable to randomize their 
uncontrolled variables, so that the differences between “experimental” and 
“control” groups (or their analogs in nonexperimental situations) are a mixture 
of the effects of the variables being studied and the uncontrolled variables or 
correlated biases. Since there is no way of knowing, in general, the sizes of these 
correlated biases and their directions, there is no point asking for the 
probability that the observed differences could have been produced by random 
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errors. The place for significance tests is after all relevant correlated biases 
have been controlled. . . . In design and in interpretation, in principle and in 
practice, tests of statistical significance are inapplicable in nonexperimental 
research. 

In a criticism, McGinnis [1958] shows that the separation of explanatory 
from extraneous variables depends on the type of hypothesis at  which the 
research is aimed. See also Kish [1959]: 

The control of all relevant variables is a goal seldom even approached in 
practice. To postpone to that distant goal all statistical tests illustrates that 
often the perfect is the enemy of the good. . . . In this sense, not only tests of 
significance, but any comparisons, any scientific inquiry other than the ideal 
experiment would be inapplicable. Such defeatism is indeed advocated by 
enemies of the social sciences. 

Indeed it would apply to all nonexperimental research. It is true and 
inconvenient that class E explanatory variables are confounded with class D 
disturbing variables. Nevertheless, statistical tests can be used to separate the 
effects of class R random variables from the other variables. 

Statistical tests of significance have definite functions, but those functions 
are limited. Their limitations should be emphasized along with their common 
misuse for measuring the strengths of relationships between explanatory 
variables. The results of tests of significance are functions not only of the 
magnitudes of relations but also of the numbers of sampling units used and 
of the efficiency of design. In small samples meaningful results may fail to 
appear “statistically significant,” whereas in large samples the most insignifi- 
cant relationships can appear “statistically significant.” 

The word signijcance conveys a sense of importance, of meaning, in 
common parlance; its use in statistical signijicance amounts to a statistical 
pun whose effects are confusing. Tests of significance are particularly 
ineffective as they are commonly used in social research: to test null 
hypotheses of zero differences, or null relationships. Such hypotheses are 
trivial reflections of the actual aims of social research. Independence between 
social variables hardly ever exists, and it is seldom even approached. If we 
have a large sample or a complete census on our tapes, we can almost always 
find the relationship between any two variables to be greater than zero. This 
is a consequence of the highly multivariate and complex interrelationships of 
social variables [Kish 19591. 

However, statistical tests have important functions in assessing the results 
of empirical social research. Specifically, the standard errors ste(j-, - Y b )  of 
differences (yo - Yh)  found for pairs of treatments A and B can be used to 
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assess the probability intervals of random effects R. With these intervals we 
aim to separate random effects R from the effects of explanatory variables E. 
Both the valid and the efficient management of those standard errors and 
intervals are the two chief purposes of statistical design. 

1.6 AN ORDERED LIST OF RESEARCH DESIGNS 

So far we have posed the choice between the classic “ideal” experiment and 
the classic survey sample as a basic strategy for research designs. These two 
designs occupy almost entirely the literature of statistical designs. But 
between these two pure types we find in actual practice frequent use of 
compromises with a great variety of other designs. I have forced that 
diversity into 10 types of designs and into an ordered list. I hope to delineate 
with this scheme the differences between experimental (analytical) studies 
and enumerative (descriptive) studies; and to link the experimental/survey 
dichotomy of this chapter to the greater diversity found in actual practice 
and in the following chapters. We begin with the extreme type of enumerative 
survey (Sl), where representation is most feasible and desired, and end with 
the “ideal” experiment (EIO), where randomized treatments are most feasible 
and needed. Observational studies are placed near the middle (05, 06). The 
10 types of design listed in Table 1.6.1 are more thoroughly discussed in 
Chapters 2-4. 

TABLE 1.6.1. An Ordered List of Research Designs 

S. Survey samples: representation with probability selection 
1. Means and totals for frame populations 
2. Means for domains; inferences to other populations 
3. Comparisons of domain means; analytical uses; controls 
4. Multivariate analysis; regressions; categorical analysis 

0. Observational studies: realism of treatments and effects 
5. Replication over several sites of treatment/control 
6. Depth study on single site of treatment/control 

E. Experiments: randomized treatments, double-blind trials 
7. Internal replication over several sites 
8. Replication or combination of single experiments 
9. “Fixed” and “mixed” models 

10. Classic random models of controlled causal systems on single sites 
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We begin with classic survey sampling for estimating totals and means for 
the entire population contained within the selection frame (Sl); this occupies 
most of the literature of survey sampling. However, most surveys must have 
purposes and uses that transcend those narrow aims. Means of subclasses in 
the sample are commonly used for estimating means for domains within the 
population (S2). This is not unrelated to the need for and practice of using 
samples for inferences beyond the frame population to the target population 
and further (1.8, 2.3). Often we also find analytical comparisons of domain 
means (S3); these may be enhanced with controls for disturbing variables and 
with statistical techniques, such as analysis of variance and covariance, 
borrowed from experimental designs. Further, the full use of multivariate 
statistics of all types for causal analysis of survey data (S4) has spread along 
with computing hardware and with computing and statistical literacy (7.1). 
Randomization of treatments and fully specified models may not be feasible; 
but they may be approached with more realistic and flexible theory and 
philosophy (2.7, 7.6). 

At the other extreme, the classic random model (EIO), fully specified and 
controlled, can seldom be brought or enticed into the laboratory. This is 
especially true in the social sciences, and “double-blind clinical trials” serve 
as reminders of some of the difficulties with all experiments on humans. The 
“fixed” or “mixed” models (E9) versus random models in the literature of 
experiments refer to representing finite populations. However, we need 
broader bases because experiments often leave wide gaps of inference and 
because they are conducted on narrowly and/or poorly defined populations. 
Models can seldom be specified so well that a stable causal system can be 
reasonably assured. Experiments need replications over subpopulations (E8) 
of great diversity to expose their results to possible “falsifications,” so that 
the boundaries of the inferential span of a theory can be mapped with greater 
confidence (7.6). Numerous and prompt replications serve as safeguards, 
however imperfect, of the narrow bases so common in medical experiments. 
On the contrary, in the social sciences, replications are much too rare and 
imperfect; and many results remain in splendid isolation, neither refuted not 
confirmed. To facilitate and speed broader inference we should advocate 
internal replication (E7) whenever feasible: replication of the experiment itself 
over several sites that invite (maximize) the possibility of “falsification.” If 
the experimental results are consistent over all the conflicting sites, they 
thereby acquire broader inferential boundaries (Section 3.1). 

Observational studies are placed between surveys and experiments, and 
they have some resemblance to each, as well as differences with both. Their 
great variety defies clear definitions, but we may agree that though they lack 
the randomization of treatments in experiments, some control of treatments 
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may be aimed for, and that this may be more feasible on restricted sites (06). 
On the other hand, with replications over several sites ( 0 5 ) ,  we can better 
spread the results over the population. But we need not randomize over the 
entire population; we may instead concentrate the study in putative critical 
subpopulations. 

The needs for descriptive, enumerative surveys versus analytical studies 
of causal systems are commonly counterposed in the literature. Sometimes 
actual situations do arise where one need clearly predominates, and these can 
and should be recognized with some care and judgment, and the proper 
design used. However, in most situations the two kinds of needs, enumerative 
and analytical, are not immediately and clearly distinct. For most research 
projects all the 10 types (and their various modifications) should be 
examined and discussed to see which of them, or what combination of them, 
seem most feasible and desirable, least expensive, and most promising of rich 
inferences. 

1.7 REPRESENTATION AND PROBABILITY SAMPLING 

In a series of four articles on “Representative Sampling,” Kruskal and 
Mosteller [1979-19801 list six categories of its meanings that confront us in 
the nonstatistical literature: (1) general, unjustified acclaim, approbation 
for the data; (2) absence of selective forces; (3) mirror or miniature of the 
population: the sample has the same distributions as the population; 
(4) typical or ideal case; (5) coverage of the population: samples designed to 
reflect variation, especially among strata; ( 6 )  probability sampling: a formal 
sampling scheme to give every population element a known positive 
probability of selection. 

We have been faced by all this variety of meanings in books and articles, 
scientific and nonscientific; in newspapers; in the courts; etc. We should not 
be surprised by this ambiguity and variety, because such is the fate of other 
big concepts like statistics, species, mathematics, physics, etc. But we should 
not accept all the proposed meanings as equally appropriate, and neither do 
the two authors. 

The principal purpose of representation is to allow us to make inferences 
(rationally and probabilistically, though not with certainty) from samples to 
target populations; then to infer even higher to broader populations of 
inference (2.1) “General acclaim, approbation” ( 1 )  and “absence of selective 
forces” (2) are only part of the atmosphere, mere accompaniments of our 
purpose, and cannot serve as definitions of representative sampling. The 
“typical or ideal case” (4) as representative is treated separately later (3. IA). 

The aim of representative sampling is to make the sample a miniature so as 
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to mirror and to represent the population with similar distributions; such 
representation serves the purpose of our intended inferences. The plural in 
“distributions” refers to representing not only one statistic (like the sample 
mean), and not only a single variable, but the multivariate distributions of all 
variables and their functions. A rigorous definition poses difficult challenges 
for mathematical statisticians. Thus I accept meaning 3 as only stating the 
aims of representative sampling, and meaning 5 as a less clear statement of it. 
But it does not describe a method for reaching those aims. 

Represenlafive sampling is a term easier to avoid because it is disappearing from 
the technical vocabulary. At different times it has been used for random 
sampling, proportionate sampling, quota sampling, and purposive sampling. 
In general, it often denotes the aims of representing a population well with a 
sample; and this is the sense of the terms populating sampling and survey 
sampling in our vocabulary. [Kish 1965, 1.61 

Probability sampling (6)  denotes the only feasible method recognized by 
survey samplers in most practical situations to achieve the aim stated in 
meaning 3. Thus we may clarify the connection between probability sam- 
pling with randomization as the practical, empirical, objective method 
(means) for achieving the stated aims (ends) of representative sampling. 
Probability sampling requires known positive (nonzero) probabilities of 
selection assigned to each element, assured with operational, mechanical 
randomization over the population in the selection frame [Kish 1965a, 1.71. 
We also know that we must accept many empirical data obtained without 
representative sampling and without probability sampling. But that is no 
justification for not keeping the definitions straight. 

‘Please note that for aims I used similar distributions rather than the same 
distribution in order to admit sampling variation. This brings us to the 
problems of measurability of sampling variation, and of large samples to 
obtain sampling consistency. These are valuable additional criteria for 
“good” probability samples [Kish 1965a, 1.61. Consistency refers to the 
approach of statistics (sample values like 7) from large samples to the 
corresponding population parameters ( r), i.e., the absence of large statistical 
bias. Measurability refers to the operational capability for computing, from 
the sample data themselves, sampling errors for the statistics (7) around the 

(7.1). 

1.8 MODEL-DEPENDENT INFERENCE 

Justifications that would make probability selections unnecessary are pre- 
sented in this section, together with my skeptical personal views about those 
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TABLE 1.8.1. Some Names Used to Contrast Two Sampling Approaches 

Model-dependent Population-bound 
Model- based Design- based 
Modeling Survey sampling 
Population free Representation 
Theoretical Randomization 
Mathematical Physical, empirical 
Model-dependent Model-based 

All the terms in Table I X.1, and more, have been used for these two approaches, and not only in 
these seven pairs. Theory, mathematics, and models must be used in any approach, and that is 
why Hansen, Madow, and Tepping [I9831 prefer the last pair, though model-bused is commonly 
used for the other approach. The first pair seems to me the easiest to remember for contrasting 
the two approaches and with the least prejudice. 

justifications. Most of my skepticism would be shared by most survey 
samplers, I believe, but not by all statisticians. My views also include 
recognition of the frequent need for accepting data, design, and inference 
without the benefits of probability sampling (1.3). I note also “four obstacles 
to” (2.7) and “substitutes for” (3. I )  probability sampling. 

1. Uniform Models. Assumptions of a uniform model are common and 
pervasive, and they have widespread and strong roots in statistical analysis. 
These assumptions may have diverse bases, ranging from simple and naive 
ignorance of the problem all the way to sophisticated models of “super- 
populations” to which the sample may be related, traced, or attributed. 
These models with “exchangeability” would make randomized selections 
unnecessary. They may be called “model-dependent” theories as opposed 
to a “population-bound” approach of survey samplers like me (see 
Table 1.8.1). Cassel, Sarndal, and Wretman [I9771 and Ericson [I9691 may 
be good sources for the former, and Kalton [I9811 and Hansen, Madow, and 
Tepping [1983], for the latter. 

Model-dependent sampling theories have great mathematical appeal and 
close links with classical statistical theories of random variables; most 
notably and tersely in mathematical statistics, where I.I.D. means ‘‘n random 
variables independently and identically distributed” (1.4). The difficulties 
arise when we leave these comfortably randomized and specified models and 
superpopulations for the unknown, irregularly clustered populations of the 
real, empirical world. If these would obey the assumptions of the theoretical 
models, then the arduous and costly efforts of randomized selections and 
probability designs would not be necessary. On the other hand, probability 
designs alone without models are not sufficient to reach beyond the frame 
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and beyond the target population all the way to populations of inference 
(2.1). Also they are often not at all feasible (1.3).  

2. Well-Specijied Models. A sophisticated, theoretical argument from the 
model-dependent side appears in econometric terms: failures of models are 
caused by “misspecification,” or because the model was “incompletely 
identified.” This implies that a population-free basis could be attained by a 
better-specified or a completely identified model. However, in the real world 
that ideal state simply cannot be attained. For example, take the simple 
model d = 0.5gt2 for the distance covered by a freely falling body. The 
constants Q.5 and 2 are yielded simply and precisely by the model. But the 
exact value of g varies in an irregular manner that is not identifiable by any 
model: It must be surveyed carefully over the earth’s surface with hard 
empirical work requiring great precision. Research results in the social 
sciences ditfer from this simple model only because they are subject to larger 
variations and, especially, in many variables. 

More specification is commonly introduced by statisticians into sampling 
designs with “stratification” and with “blocking” into experimental designs. 
These methods control some of the disturbing variation that is assignable to 
stratifying (blocking) variables. But all empirical evidence shows clearly and 
repeatedly that these methods yield only partial controls, and usually only 
modest reductions of errors; most or much of the survey (experimental) 
variation remains within the strata (blocks). Relations of the best available 
stratifying (blocking) variables with the study variables leaves much of the 
variation unaccounted for, unspecified, and unidentified. 

3. A similar attack on probability sampling 
blends into attacks on the utility of statistics in general: “If the descriptions 
and inferences from incompletely specified models only give averages for 
populations, what good are they for inferences to and predictions for 
individuals or for homogeneous, identifiable groups?” It is true that statistics 
deal with averages for aggregates and yield only probabilities, often only 
vague results, for individuals. Samples do yield inferences about subpopu- 
lations and domains (2.3, 7.3); but practical limits (in numbers of cases and 
units) are reached at levels of aggregates much above the level of individuals, 
who typically cannot be predicted with precision. (And some may add, 
“Amen, and so be it.”) 

“If I need statistics,” said some physicist, “I just take more observations 
instead.” More observations reduce sampling errors, and they imply spend- 
ing one’s way out of the uncertainties (both probablistic and theoretical) 
of statistics. Others say, “If I need statistics, I know I’ve done a bad 
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experiment.” But this implies the reverse of the other: that substantive 
problems and measurement biases swamp statistical errors. These attacks are 
common in the social sciences, which endure attacks against statistics in 
favor of clinical methods, depth, and participant observations, as well as 
intuition and introspection (2.7). But for the substantive problems neither 
more nor better statistics are substitutes; we can admit that without going 
into all those problems that are not central to a book on statistical design. 



CHAPTER 2 

Analytical Uses of 
Sample Surveys 
I t  is characteristic of those matters in which something is known with exceptional 
accuracy that, in them every observer admits that he is likely to be wrong, and 
know about how much wrong he is likely to b e .  . . . I t  is an odd fact that subjective 
certainty is inversely proportional to objective certainty. Bertrand Russell, The 
Scientific Outlook. 
Scientists know nothing for certain. Gerald Piel. Science, 17 Jan. 1986. 

2.1 POPULATIONS OF ELEMENTS AND SAMPLING UNITS 

Textbooks on sample surveys present adequate treatments for a limited set of 
statistics from clearly defined populations, and we shall not repeat them here. 
However, those treatments are deficient for our purposes in two respects. 
First, concentrating on statistics of simple means and aggregates, they 
neglect comparisons and other analytical statistics with which we deal in this 
chapter and in Section 7.1. These brief pages must suffer between the double 
pressures and handicaps of being inadequate for covering their vast subject 
and of being too terse, dense and curt. I fear that this chapter (unlike the 
others) is not “self-contained”, and is difficult for readers without a course in 
survey sampling. But references guide the readers toward an ample coverage 
of this vast subject [Yates 1981; Cochran 1977; Kish 1965a; Hansen, 
Hurwitz, and Madow 19531. 

Second, sampling theory assumes populations that are more simply and 
clearly defined than those we need for subjects of representation and 
inference. Let us agree that for most surveys it  is difficult or impossible to 
make the samples entirely representative of the desired populations. Beyond 
sampling variaiions are the diverse divergences that may bias the selection, 
such as defective frames and nonresponses. Distinctions are usually drawn 
between the frame population and the target population, but I find i t  useful 
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to distinguish four populations to account for the diverse types of dis- 
crepancies between achieved samples and the ultimate aims of inferences 
based on their results: the survey, frame, target, and inferential populations 
(Figure 2.1. I). 

These four kinds of populations serve to distinguish three types of 
discrepancies common to most surveys. One or another of these types may be 
negligible on some surveys and then the lucky researcher may collapse two 
populations into one. Statistical inference from probability samples to survey 
populations uses sampling errors, which can be measured probabilistically 
from the data yielded by the samples themselves. This important property of 
sampling errors is called “measurability” (1.7, 7.1). Thus it differs from the 
three other kinds of inferences, which require, alas, models and/or data from 
outside the sample. 

The survey population differs from the population of the “frame” from 
which the sample was selected, because of losses due to total nonresponses 
(refusals, not-at-homes, etc.) and due to “item nonresponses” (i.e., items 
missing from accepted interviews, denoted as “not ascertained”) [Kish 
1965a, 13.41. But the frame population can also differ from the intended 
“target population,” because of deficiencies in the frame. These deficiencies 
are called “noncoverage,” or missing units or incomplete frame, and may be 
the net result of undercoverage minus overcoverage. Figure 2.1.1 illustrates 
those deficiencies, nonobservations, but the magnitudes of these can vary 
widely. For example, a survey in a developed country may have small 
noncoverage but very large nonresponses, both not-at-homes and refusals, 
especially for incomes; on the other hand, fertility surveys in developing 
countries may have small nonresponses from the selected women but may 
suffer from large noncoverage of dwellings. Estimating the magnitude on 
noncoverage is difficult, because it requires going beyond the sample and the 
frame to outside data, like a census, register, or quality check [Kish 1965a, 
13.31. But for nonresponses the magnitudes can be estimated with careful 
checks of the selected sample, though not their effects. Different from 
unplanned noncoverage are the deliberate “exclusions” for practical and 
economic reasons of part of the population. 

However, sample results are also used beyond the originally designated 
target population for inferences to a wide variety of other populations, which 
differ from the target in kind, scope, location, time, etc.; these are necessary 
and welcome uses of research data. For example, a sample of Michigan 1986 
may be used for inferences to Ohio or to the United States in 1986 or in 1990. 

Inferences from the survey to the frame population, and even to the target 
population, have bases in data. At least they can and should have such bases, 
though these may need preparation and effort. The size of nonresponse can 
be measured and the size of noncoverage estimated. Studies can be made to 
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Figure 2.1.1. Discrepancies between four populations. 
Probability samples underlie the achieved survey population, but two discrepancies come 

even between them: sampling errors and item nonresponses. Both of these direr greatly among 
variables and the amount of item nonresponse is shown as differing greatly among variables. For 
both of these discrepancies the sample responses serve as bases; sampling errors are computed 
from them; and they are used for “imputing” or weighting for item nonresponses. 

Thus probability samples are shown as a broad and solid foundation for the survey 
population, on which to build the structure of the inference above it. For the discrepancies 
beyond the survey population one must go beyond the sample data, with the help of implicit or 
explicit data. The span to the frame population is due to roial nonresponses of diverse kinds 
(refusals. not-at-homes, etc.); the size of nonresponses may be estimated from sample records 
(with efort and care), but estimating their effects needs models and auxiliary data. The size of 
nonroveruge can only be estimated with models or from checks with outside sources, yet this 
portion also belongs to the target population. This may also include a defined and deliberate 
e.~rlusion from the coverage. 

Furthermore, sample data are also used for inferences beyond the target populations, and 
these are many, various, and ill defined. “Superpopulations” of sampling theory are not only 
among these, but behind all these inferential populations. These model-dependent inferences 
( I  .8) are too often merely implicit. Even more vagueness describes the path of judgment samples 
directly to the target population, and such vagueness is indicated by the thin, wavy, population 
line, as for the extrapolations to vague inferential populations. 
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reveal the effects of these discrepancies, with joint uses of empirical data and 
models. In planning and executing a sample design the target population 
should be planned for and kept firmly in mind. The discrepancies between the 
achieved sampled population and the target population-in nonresponses 
and noncoverage-and their expected effects have to be allowed for; 
although this is often done only vaguely, without exact measurements. 

However, the situations for inferential populations differ a great deal from 
those for the target population: The design of a sample cannot possibly be 
planned for all the populations to which inferences will be made by 
researchers and by readers. Yet the likely inferential populations should not 
be entirely disregarded either in the design. For example, decennial censuses 
have been planned for a decade of use; and demographic surveys have long 
lives, because of stable population models. On the other hand, health and 
employment data are planned to describe only a month or a few months. 
Political and electoral polls are projected for limited spans of time and space 
(6.1). In planning samples some ideas about the likely populations of 
inference should be conceived, even if those ideas are vague, limited, and 
incomplete. This should be true of all research endeavors. 

If the inferences from survey populations to diverse inferential popula- 
tions require models and judgment, why not use models for inference from 
any judgment sample directly to the target population? These questions are 
raised both by naive practitioners and by sophisticated theorists, though 
in different idioms. The differences between probability and judgment 
samples are basically similar to those between the difficult and uncertain 
steps of the, empirical sciences and the imaginative flights of pure 
speculation. These differences are too vast for discussions here, but we refer 
to those of Sections 1.4, 1.7 and 1.8. Inferences from a ill-defined or 
undefined “sampled” population to a target population and to higher 
inferential populations would require flights of imagination, or stronger 
models than usually can be justified in social research. On the other hand, we 
must also admit that probability samples for desired target populations are 
often not feasible, and to be realistic and honest, we shall look at some 
substitutes in Section 3.1. 

The elements of a population are the elementary units for which infor- 
mation is sought, and they comprise the population to which inferences are 
to be made. Elements are the units of analysis determined by the research 
objectives, and the population is defined jointly with the elements. 

Sampling units contain the elements and they are used for selecting 
elements into the sample. In element sampling each sampling unit contains no 
more than one element. But in cluster sumpling the sampling units are clusters 
of several (or many) elements (e.g., persons in households, households in 
blocks or counties, students in classes). For example, classrooms, schools, or 
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school districts may all be clusters with each used at three successive stages 
for selecting a sample of students. In multistage sampling a hierarchy of 
sampling units is used for selecting the sample, so that each element must be 
identified with (belong to) a single sampling unit at each stage. Thus the 
population also becomes an aggregate of the sampling units at  each stage, 
and the sampling units at each stage comprise complete partitions of the 
population at that stage. 

Listing units (listings) are used to identify and select sampling units from 
lists. Instead of actual lists we may need to use a frame as a procedure for 
selecting units. Frame problems (deficiencies) denote the lack of a one-to-one 
correspondence ( L - S )  from listings ( L )  in the frame population to the 
sampling units ( S )  in the target population. Such problems can be sorted into 
four classes (with 0 for absence): (1) missing units (0-S) ,  (2) blanks (L-0), 
(3) replicate listings (L-S-L), and (4) clustered units (S-L-S)  [Kish 1965, 

Observational units are sources of information, and they are called 
respondents in interview surveys. They may be distinct from elements; e.g., 
for a survey of children the observational unit may be mothers (for births 
and for health data) or teachers (for education). 

One survey may yield statistics about several diverse populations. 
(1) Diflerent contents, e.g., surveys of crime or of home accidents can yield 
data about separate incidents, persons harmed, or families, households, 
or homes with incidents. (2) Dzferent units, e.g., consumer data may be 
tabulated by persons, spending units, families, or households. ( 3 )  Different 
extents, as in the analysis of subclasses (2.3). (4) Different periods may be 
covered by the same survey (6.1). 

2.7, 11.1-11.51. 

2.2 INFERENCES FROM COMPLEX SAMPLES 

Standard methods of statistical analysis have been developed on assumptions 
of simple random sampling (srs). Assuming independence for individual 
elements (or observations) greatly facilitates the mathematics used for 
distribution theories of formulas for complex statistics. “Given n random 
variables” is either stated explicitly or assumed implicitly, for most measures 
of reliability, such as cr/& for means, etc. This concentration is represented 
by row A in Figure 2.2.1. 

However, independent selection of elements is seldom realized in practice, 
because much research is actually and necessarily accomplished with com- 
plex sample designs. I t  is economical to select clusters that are natural 
groupings of elements, and these tend to be somewhat homogeneous for 
most characteristics. The assumptions may fail mildly or badly; hence 
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Statistics 

figure 2.2.1. The present status of sampling errors. Row I is the domain of standard statistical 
theory, and column I of survey sampling [Kish and Frankel 1974). 

standard statistical analysis tends to result in mild or bad underestimates in 
the lengths of reported probability intervals. Overestimates are possible, but 
rare and mild. Those complexities are discussed below briefly, and in some 
detail in textbooks and many articles on survey sampling [Kish 1965a, 
5.1, 14.1, 14.2; Kish 1957; Kish and Frankel 1974; Verma, Scott and 
O’Muircheartaigh 19801. These (and many others) show how neglect of the 
complexities of design often lead to grossly understated sampling errors and 
intervals, and thus to overstated confidence in sample results. 

Publications on survey sampling typically concentrate on providing 
estimates of means and totals for the frame population, estimates of the form 
y = y /n  and E = y x  where y = C y, is the sample sum for thc n elements in 
the sample, and f = n/N,  the uniform sampling fraction. This concentration 
is represented by column 1 in Fig. 2.2.1. The published methods also include 
estimators for variances and standard errors, ste(j7) = &(j); related 
measures of sampling errors; and methods for computing these from the 
sample data. The chief function of these statistics is to provide probability 
intervals of the type 7 & t,ste(Y). Standard errors are provided for a great 
variety of selection methods (clustered, multistage, stratified, etc.) and for 
diverse methods of estimation (ratio, regression, difference) for either the 
mean or the total. These include weighted means C w,y,/C w, to compensate 
for unequal probabilities of selection and for modified methods of 
estimation. 

Thus the methods of survey sampling concentrate on simple statistics 
from complex selections (column I) ,  whereas standard statistical analysis 
(row A) deals with complex statistics but only from simple random selection 

- 
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of elements. However, we often need complex statistical analyses from data 
that come from complex samples. Complexity can take many forms in either 
dimension; hence it would be difficult to list all their possible combinations. 
But we can conveniently and usefully divide complex selections into two 
classes: stratified element sampling and clustered selections (usually also 
stratified), which have much more drastic results on sampling errors. Also 
subclass means and their differences have much simpler treatments than 
more complex statistics, like regressions. 

For means based on the entire sample, or for similar totals, two simple 
generalizations are commonly known and widely useful. Proportionate 
stratified element sampling generally reduces variances, but usually only 
mildly. Cluster sampling generally increases variances either mildly or badly, 
depending on several factors; and those increases survive the ameliorating 
effects of the stratification that usually accompanies cluster sampling. Both 
the reductions of stratification and the increases of clustering are expressed as 
ratios of actual (“true”) variances to the variances (az/n) of simple random 
(independent) samples with the same number n of sample elements. These 
ratios are well known as “design effects” (deff or deftZ), which are justified 
theoretically and documented empirically in the literature of survey 
sampling. These generalizations assume equal probability selection 
methods (“epsem”) and “self-weighted’’ statistics; unequal probabilities 
and corresponding weights introduce complications that obstruct such 
easy generalizations (7.4). 

Methods of survey sampling can be applied fairly readily to subclass 
means and to their comparisons (Section 2.4). Stratified element sampling 
(B2) tends to reduce sfightly the variances for subclass means: They are 
reduced compared with simple random sampling (srs), but only slightly 
compared with effects on the mean for the entire sample. In clustered 
sampling (C2) the sampling errors tend to be increased compared with srs, 
but effects for subclasses tend to be less than those for the entire sample 
(Sections 2.4, 2.6). 

For complex and analytical statistics it  is difficult to make sweeping 
generalizations; because the subject seems too complex for this early chapter, 
it is postponed (7.1). There are many diverse kinds of statistics and 
theoretical results are few, because the mathematics are difficult. Compu- 
tations with modern machines and methods, though not easy, are possible. 
For clustered samples (C3) those methods are denoted as BRR (balanced 
repeated replications), JRR (jackknife repeated replications), and Taylor (or 
linearization) methods; and the increases of variances for clustered samples 
have often been found to be variable, irregular, and considerable (7.1). For 
stratified element sampling the effects (reductions) are conjectured to be 
small, even negligible. 
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The preceding discussions deal with sampling errors, confidence intervals, 
and similar probability staLements. These measures of the variability of 
descriptive statistics may be called inferential statistics, or “second-order’’ 
statistics; and they depend heavily on the methods of sampling, technically 
on the joint probabilities of selection of elements (7.1). On the other hand, we 
also have a useful generalization: The descriptive statistics, or “first-order” 
statistics, are little affected by the complexity of selections. Hence the 
descriptive statistics-like means ( j ) ,  element variances (sz), coefficients of 
regression (byx), or correlations ( r J ,  etc.-computed “properly” from large 
samples are “good” estimates of corresponding values in the population ( Y, S 2 ,  
B,.,,. Ryx, etc.) (7.1). By “good” we mean technically “consistent,” or nearly 
unbiased, for ‘‘large’’ samples-large in numbers of sampling units. Com- 
puted “properly” means weighting inversely to probabilities of selection, if 
these are unequal. For the preceding sweeping generalizations there exist 
some theoretical grounds and more empirical evidence, but little in the way 
of general discussion [Kish and Frankel 19741. 

2.3 DOMAINS AND SUBCLASSES: CLASSIFICATIONS 

Analyses based on subdivisions of survey samples may be the most common 
method of results for social research today. Reasons for that popularity are 
discussed later and placed in contrast with some alternatives (3.1 and 4.2). 
There is confusion about the words subclasses and domains for subdivisions. 
Let us use subclasses for the subdivisions (partitions) of the sample and 
domuins for the corresponding subdivisions (subpopulations) of the popu- 
lation. The subdivisions represent categories of some variable, like age, 
occupation, region, etc., and sometimes two (perhaps more) variables such as 
sex age subclasses or region-occupation subclasses. Means of subclasses are 
used for estimating the means of corresponding domains; other subclass 
statistics estimate corresponding domain parameters in the population. 

Sometimes we may be concerned with subclasses based on  behaviors 
rather than age, sex, and other predetermined characteristics; for example, 
subclasses of marriage status (single, married, divorced, widowed) as bases 
for observing other behaviors or attitudes (health, satisfaction, etc.). The 
subclasses serve as denominators for means and generally as predictor 
(causal, stimulus) variables in statistical analyses. The designation of sub- 
classes depends on the needs and aims of the researcher to explain differences 
among domains in the population; thus expressed attitudes (e.g., Republican, 
Democrat, independent, etc.) may also be used for subclasses. Further- 
more, subclasses are used not only as predictor variables, but also as controls 
for disturbing variables (4.2). Note that we use the subclasses as denominators 
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Figure 2.3.1. Classification of Domains and Subclasses (with Examples) 

for means denoted as j, = yc/nc and for other subclass statistics. However, if 
we are discussing relative sizes of subclasses as numerators in the sample, 
such as nC/n  or y,./y, we would call them “shares” of the entire sample. 

The statistical sampling aspects of design can be facilitated with rough 
classifications both of types and of sizes for domains and subclasses 
(Figure 2.3.1). First note three rough types of domains (and subclasses). 

1.  Design domains designate subpopulations for which separate samples 
have been planned, designed, and selected. The combination of design 
classes forms the entire sample, usually as a sum of independent 
samples. In national samples, examples are the major regions and the 
urban and rural domains, and these are composed of entire strata of 
primary sampling units. 

2. At the other extreme are crossclasses that cut across the sample designs, 
across strata, and across sampling units. These are the most commonly 
used kinds of domains and subclasses-e.g., age, sex, occupation, 
education and income classes, behavior and attitude types, etc. They 
were not separated into design domains because information was not 
available on these variables, or because they were ignored. 

3. Between the two extremes, but less commonly used than the two 
dominant types, are mixed classes of diverse kinds. They were not 
separated by the design, but they tend to concentrate unevenly in the 
sampling units and in the strata. For example, occupations such as 
fisherman, farming specialties, miner, and lumberjack, which are segre- 
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gated by natural forces; or ethnic groups segregated by social forces. In 
both cases the segregation may be prevalent, but neither complete nor 
available as auxiliary data for design needs. 

The sizes of domains also influence the choice of methods for design and 
estimation; hence a crossclassification of the preceding types with classes 
based on sizes of domains also seems useful. This classification is stated here 
roughly to orders of magnitudes, with descriptive names assigned for ready 
reference. Although the boundaries are arbitrary they are useful, because 
different size classes need different sampling strategies. 

I .  Major domains comprise perhaps 1/10 of the population or more. 
Examples are major regions for design domains and 10-year age groups 
or major occupational categories for crossclasses. For major domains 
reasonable estimates can be produced with standard methods from 
probability samples. 

2. Minor domains comprise perhaps from 1/10 to 1/100 of the population. 
Examples are populations of the 50 states of the United States; or 
single years of age; or two-fold classifications of major domains like 
occupation by education; or regions (designed) by education 
(crossclass). 

3 .  Mini-domains comprise perhaps from 1/100 to 1/1000 or even to 
l/l0,000 of the population. Examples are populations of the over 3000 
counties of the United States or a three-fold classification of age by 
occupation and by education. For mini-domains usually (and often For 
minor domains) the sample bases are too small for reliability, hence 
standard methods of estimation are inadequate, and new methods are 
needed (5.3) [Purcell and Kish 19801. 

4. Rare types, comprising less than 1/10,000 in the population, are 
problems for which samples of an entire population are useless, and 
separate lists and methods are needed [Kish 1965a, 11.41. 

2.4 OVERVIEW OF SUBCLASS EFFECTS 

Survey sampling methods deal principally with entire samples selected to 
represent some specified populations, and discussions of subclasses in 
textbooks are too limited. Therefore let us have here a brief overview of 
diverse effects that arise when subclasses of the sample are used for inferences 
about corresponding domains of the population. We are concerned especi- 
ally with major crossclasses because they are the most used and most useful 
and because the sweeping generalizations below apply most readily to them. 
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Selecting subclass members from a sample has the effect of assigning zero 
values to all variables of nonmembers. Hence the effects are similar to 
nonmembers appearing as blanks in the selection frame; the proportion of 
blanks increases as subclass proportions decrease. 

1. Selection probabilities are preserved for individual elements in sub- 
classes. The probabilities P,  assigned to member elements are unaffected by 
the zero values assigned to all variables of nonmembers when creating 
subclasses. Assigned weights proportional to I/Pi can also be used for the 
subclasses. 

2. Sample sizes n, become highly variable for crossclasses. Zero values for 
all nonmembers have the same effect as blanks in the selection process. When 
crossclasses become smaller, the variability increases greatly and size con- 
trols designed for the entire sample tend to become lost for small crossclasses. 

3. Estimates of means and totals retain their forms for subclasses. The 
unbiased nature of simple totals X y,/P, is retained with the undisturbed 
selection probability (1). The ratio means j7, = y,/n,  retain their sturdy 
consistency until the variability of size (2) in the denominator becomes too 
high for small crossclasses. 

4. Variances of means and totals become greatly affected as the sizes of 
subclasses are decreased. The main effects are increases of variances in rough 
proportion to decreases in subclass sizes. But these simple srs effects are 
modified by design effects in complex samples. We shall discuss later the 
different effects in stratified element sampling (2.5) and in cluster sampling 
(2 .6);  and the effects are different for crossclasses and for design classes. Very 
briefly, for means of design classes the average effects tend to resemble the 
effects on the entire means-usually modest reductions of variances for 
proportionate stratified random element sampling (pres); but for cluster 
sampling, increases of variances may be small or large. However, for 
crossclasses both the reductions of pres and the increases of cluster sampling 
tend to disappear from the variances; and for crossclasses representing small 
proportions the variances approach those of srs. 

Most important, but also most difficult to quantify, are the likely e$ects on 
the ratios ofbiases to variances in the mean square errors. This change of the 
ratio of bias/@ in domains is neglected often but not entirely, and the basic 
argument (model) is simple [Kish 1965a, Fig. 13.1.11, 13.2CI. For domains 
the standard errors increase by the ratio a as the sample size decreases 
from n, for the overall means to n, for a subclass, except that for cross classes 
the increases are also affected (dampened) by changes in the design effects. 
For example, a crossclass of 10 percent of the sample, may have ste (Y,) = 
3 ste(y,), since ,,fm = 3, if an assumed deftZ = 10/9 almost 
vanishes for the crossclass. The bias for the overall mean B, will tend to 
remain the same on the average for the domains. Then with B, = B, the bias 
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Figure 2.4.1. Variable errors (a) and biases (B) in root mean square errors (RMSE). 
The bases represent sampling errors and other variable errors (a). For example, a, may be 

the ste(7,) for the mean 7 of the entire sample and a, may be a larger ste(p, ) for a subclass mean, 
and a, may be the ste(Y< - Ya) for the difference between two subclass means. 

The heights represent biases (B) and the hypotenuse denotes the RSME = m-; 
(see 7.2F).  ( I )  For the entire sample the bias B, may be large compared with the variable error 
u,, thus taking larger samples would not decrease the RMSE, by much. (2) However, with the 
same bias B , ,  but with a smaller sample in the subclass, the ratio changes and the a2 dominates 
the RMSE,; and this is not much larger than for ( I )  despite a much smaller sample. 
(3) Furthermore, for the difference of means, the net bias B,  may be much smaller; so that even 
with a larger a,, the RMSE, for the difference is but little greater than RMSE,. This drastic 
change in the bias ratio B / o  tends to  appear not only for differences between subclasses within 
the same sample, but also for differences between repeated surveys. 

ratio B,./ste (vc) = B,/3  ste (Y,,). Thus the relative magnitude of the constant 
bias is diminished in the root mean square error for  domains (Figure 2.4.1). 

5 .  Comparisons (diferences) of subclass means represent common uses of 
survey data. For these differences yc - yb = yc/xc - Yb/Xb the denomi- 
nators xc, xb have several common characteristics. They generally denote 
categories of the same variable, and usually nonoverlapping partitions; thus 
they represent count (0,l) variables that distinguish members from nonmem- 
bers of subclasses. They may be self-weighting counts of n’s or weighted 
counts; they may also represent noncategorical variables-e.g., live births 
y ( ,  & per total births x ~ ,  xb of women in age classes c and b. For k 
partitions of the sample each pair represents only one of k(k  - 1)/2 
possible pairs. 

For differences of subclass means we must again distinguish between 
design classes and crossclasses. For design classes, the variance of the 
difference is simply the sum of the variances for the means (because these are 
independent). But for diferences of crossclass means the variances are brought 
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closer to srs variances. For cluster sampling the variances are further reduced 
(2.6). For proportionate element sampling the variances become practically 
equivalent to srs variances (2.5) .  For both designs these are the typical effects 
on “design effects” of the covariances between crossclass means. 

The decrease in the ratio of bias to variance we noted for subclasses 
is likely to be further accentuated fo r  comparisons of subclasses: for 
bias (7, - yb)/ste(j, - j h ) .  We expect a further increase of f i  in the 
ste(7, - j b ) ,  except for a “dampening” in design effects. But then consider- 
able decreases in the net bias of (y, - j b )  may occur to the extent that the 
pairs of biases are similar (or “additive”). This compromise view is more 
cautious then either of the commonly held extremes: that the bias is bound to 
disappear or that nothing happens to it (Figure 2.4.1). 

6. Designs for domains induce conflicts with the entire sample and with 
other domains. Conflicts arise in allocating sample sizes and sampling rates 
to provide adequate sample bases for diverse design domains (7.3). 

7. Estimates for small domains require special techniques (Section 5.3F). 
These can improve estimates for minor domains, and they may facilitate 
estimates for mini-domains that would not be feasible at all from the sample 
alone. They may be used even for major domains, although their estimates 
can also be made from the sample alone. 

2.5 PROPORTIONATE STRATIFIED ELEMENT SAMPLING 
(PRES) 

I n  stratified sampling the sampling units of the population are partitioned 
into strata in order to select independent samples from each. For pres we 
assume simple random selections (srs) of elements within strata. Estimates 
for design domains present no special problems because for each domain we 
use the usual formulas of stratified element sampling (7.4.9). When the 
domain contains a single stratum, we are back to simple random sampling. 
Sampling textbooks give adequate treatments for the means and variances 
[Kish 1965a, 3.31. 

However, most subclasses needed for statistical analyses are crossclasses, 
since they cut across the strata of the selection process. The proportions Mc/, 
of crossclass members in the strata (h) leave residuals ( 1  - Mc/ , )  of 
nonmembers, which appear as blank selections that loosen the size control 
of stratification. In the hth stratum, srs selection of nl, from NIl elements 
with rates/;, = n, , /NI,  yields a crossclass with sample size m/lc. This number is 
a dichotomous random variable with expectation j ; ,Mck and variance 
( 1  - , j j l ) n ~ l ~ c . , g ( l  - a(.,l); here M(,/ ,  is the size and M(./l = M(. / l /N/ l  the 



40 2. ANALYTICAL USES OF SAMPLE SURVEYS 

proportion of domain members. The effects of this variation in increased 
variances of crossclass means, totals, and differences we note later. Detailed 
treatments and derivations are available elsewhere [Kish I965a, 1969, 1980; 
Cochran 1977; Yates 19601. 

The effects of crossclasses on variances can be viewed most simply in 
proportionate stratified random element samples (pres), when elements 
are selected with the same equal probability f = n/N = f h  = n/,/Nh 
within each stratum. This results in a selflweighting sample in which the 
sample proportions are equal to the population proportions and thus 

= n,,/n = W,, = N / , / N .  Thus the total sample size n has been controlled 
with pres to represent the stratifying variables found in the population N .  
These controls have the effect of reducing the variance from S 2 / n  in srs to 
S,f/n, the within strata variance in pres. The ratio of reduction may be called 
the design effect of pres:deft2(pres) = S,:/S2. The reduction comes from 
eliminating the between-stratum variances, S,Z = S 2  - S:: The greater the 
homogeneity of elements within strata, the less is their within variance S; 
and the greater is Si .  However, it is seldom that the relative reductions 
sgs2 = (S2 - s2 “ ) IS2  = 1 - S,;/Sz are greater than 10 percent, because 
finding better stratifying variables for elements (individuals) is difficult and 
rare. 

For crossclasses even those small reductions tend to be lost in proportion 
to the decrease in the relative size G, = M C / N  of the crossclass; e.g., a 
reduction of 10 percent for pres becomes about 2 percent for crossclasses 
of M, = 0.2. Thus for modest pres reductions for the entire sample the 
variances for crossclasses tend to srs variances, and the design effects 
S:/Sz approach 1.  The element variances are roughly S; + 
(1  - M c ) ( S 2  - S; )  = S 2  - i@,.Si; these become S; for the entire sample 
(M, = 1) and approach S2 as the crossclass proportions a,. become small. 

The increases in crossclass variances are proportional to the loss of 
control over sample sizes mch within strata, and the proportions (1 - M,) of 
nonmembers (blanks) represent those losses. The relative sizes rn,./,/C mch of 
the strata for crossclasses are subject to random variations around (instead 
of being controlled at) their population values Wch = k tch /CMCh;  that is 
why such variances tend to approach srs variances. When reliable values for 
Wc12 can be found for crossclasses and used with “ratio estimates” X I ,  Wclljcl ,  
for “poststratification,” the gains of stratification (reduction of variances) of 
pres can be nearly recaptured. However, reliable values of WCh for cross- 
classes are rare and mistaken values can result in biased estimates. 

The tendency for the gains of proportionate stratification to disappear 
becomes even stronger for variances of comparisons: For proportionate 
struti5ed element sampling the vuriunces for diferences of crossclass means 
tend to upproach closely the variances fbr unstrcltijied srs. Thus the variance 
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for (-Yc - yh)  tends to become simply .$in,. + sb/nb. The covariances 
between means across strata typically cancel the gains of proportionate 
element stratification [Kish I965a, Section 4.51. 

2.6 CLUSTER SAMPLING 

Clustering generally increases the variances of sample means, and these 
increases can be measured with the design efects: the ratios deft2 = actual 
variance/srs variance. The srs variance for means can be computed simply as 
s2 /n ,  but for computing the actual variance the sample design must be 
considered. The actual variances, hence also deft2, depend on the nature of 
the variables measured, on the sample design, and especially on the sample 
sizes 6 of the achieved clusters. The sample design interacts with the 
distributions of variables over the population to produce ratios of homo- 
geneity, roh, specific for variables. These relations can be expressed 
roughly, but simply and effectively, for sampling errors of means 7 as: 

actual (var)/(sz/n) = deftZ N [ I  + roh (6 - l)] (2.4.1) 

Here 6 = n/a,  where n is the total size of the sample and a is the number of 
“primary sampling units” (PSUs) in the sample. Thus a represents the 
number of independent selections, and this rough formulation simply accepts 
the methods of subsampling and stratification actually used. Simple 
methods, based on primary selections (or “ultimate clusters”) for computing 
variances and deft2, can be found in several sampling textbooks [Kish 1965a, 
Section 6.5; Kalton 19791. 

This expression of deft2 in terms of roh and b separates roughly but 
usefully four sources of variation in actual variances. 

1.  Dividing the actual variance by s2/n yields a “standardized” deft2 from 
which the units of measurement, the basic variation oz of the 
population distribution of the variable yi, and the overall sample size n 
have all been removed (as “nuisance parameters”). 

2. The values of roh vary greatly between variables in the same sample, 
mostly between 0.001 to 0.2 (to give a rough idea) for most empirical 
data; but negative values and values closer to 1 can also be found. The 
statistic roh, computed as (deft2 - 1)/(6 - I), estimates the para- 
meter ROH (the ratio of homogeneity) for a specific variable and for 
the specified sample design. This differs only slightly from the classical 
“intraclass correlation” RHO between elements in two-stage sampling 
[Kish 1965a, 5.61. 
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3. The average cluster size of h = n/a is an important factor, since for 
large 6 even small values of roh can result in large increases of deft2. 
Though 6, is fixed for any total sample size, during survey analysis the 
cluster sizes 6, for diverse crossclasses are decreased and do vary 
greatly, hence also the deft:. But the roh values of a variable remain 
relatively stable and “robust.” 

4. The value of roh (for any variable) depends both on the distribution of 
the variable over the population and on the nature of the sample 
design-on the kind, size, numbers, and stratification of the sampling 
units used in the various stages of selection. However, separating those 
components of the variance (and for each of the variables) is beyond 
the resources of most surveys. 

The main strategy for computing and for using sampling errors should 
aim at separating the diverse effects of the greatly different values of rohs 
for different variables, from the distinct effects on the computed values of 
deft: of decreasing subclass sizes a,. on the values of average cluster sizes 
b,. Hence the first step should be to compute for the total sample size the 
variances, var( j , ) ,  and the design efects, dej i2(y , ) ,  for all (or many) of the 
most important variables (7.1). Modern computers and programs make 
many such computations feasible. 

The variances depend on too many factors for useful generalizations. 
However, values of deft2@,) are much more predictable and useful, because 
dividing by s2/n removes the disturbing factors of units of measurement and 
sample size. The computed values of deft2(y,) should be mostly between 1 
and 6 if the average cluster size h, < 100, because most values of roh are less 
than 0.01 or 0.05. Thus deft2(LI) also serves as a rough check against wild 
mistakes in computations. However, some values may be lower than 1 
because of sampling variation, discussed briefly later; some may be much 
higher, because of strong segregation in clusters of some variables (like 
“race” in the United States). 

Design domains, such as regions, contain primary selections in separated 
strata; hence separate computations for each design domain could simply 
follow standard variance formulas. However, this may not be the best 
strategy, for two reasons: (1) There may be too many domains for separate 
computations and presentations; (2) the number of primary selections may 
become too small and result in unstable estimates of the variances. Thus it 
may be better to use “pooled” estimates of the variances; and if we assume 
similar 6 and similar average design effects for a variable over all design 
domains, this would be (average of deft2)s$/n,. For differences between 
means ( j ,  - jb) of design domains the variances consist of the sums of 
variances, when the samples are independent. 

For crossclasses, which occur most frequently, the effects are quite 
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different. Crossclasses tend to cut across all strata and all clusters and hence 
to reduce the design effects of clustering in a drastic and fairly predictable 
manner: by reducing the average cluster size from 6, to 6, = u,b,, where 
Mc = M , / N  represents the proportion of crossclass members among the N 
population elements. To the extent that we may assume the roh, for 
crossclasses to equal the roh, for the entire sample, we have 

deftf = [ I  + roh,(b, - I ) ]  N [ I  + roh,(M,b, - l)]. (2.6.2) 

Thus defi: tends to be reduced linearly toward I as the crossclass propor- 
tions decrease. This model, based on assumptions that roh, = roh, and 
b, = M,h, held fairly well in thousands of empirical computations across 
many kinds of surveys. Its imperfections pale into insignificance compared 
with the differences of roh values between variables, which often may be 
hundredfold (0.001 to 0.1) on one survey. Also sampling variations in 
computing var(j,) and deft2(j,) directly may be less accurate than using 
(2.6.2) for 

var(j,) = [I + roh(M,h - l)]s2/n,. (2.6.2a) 

Hence roh may be pooled for a variable from computations of deft2 for 
related crossclasses that may vary in size. If the roh, are simply imputed from 
variances computed for the entire sample, it is best to increase it slightly to 
1.2 roh, or 1.4 roh,. The values of these synthetic roh, values tend to increase 
slightly for decreasing M,, partly because of effects of variations in cluster 
sizes; and those increases are greater for those subclasses, such as socio- 
economic classes, that are unequally distributed crossclasses. These relations 
may break down altogether for small crossclasses when 6, approaches 1, but 
fortunately they are not needed then because deft2 should be near 1, with 
negligible effects of clustering. [See Verma et al. 1980 and Kish et al. 1976 for 
both methods and data.] 

For differences of crossclass means the variances become var(j7, - jb) 
= var(y,) + var(yb) - 2 cov(y,, j h ) .  The covariances arise because the 
crossclasses come from the same clusters; they are usually positive and thus 
they often reduce the variances appreciably. Theory and computation of 
covariances readily follow those for the variances [Kish 1965, Section 6.51. 
However, there may be too many to compute and present: For each 
crossclass set with k categories there are k(k  - 1)/2 pairs of differences. 
A useful rule has been found in numerous computations for large varieties 
of data: 

s,2/nC + $/nc < var (y, - J b )  < var(j,) + var(jh). (2.6.3) 
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That is, the terms 2 cov(yc, Y b )  reduce the effects of the pair of crossclass 
variances for var(J, - F h ) ,  yet these remain greater than the srs variances 
on the left. Empirical results, though subject to sampling fluctuations, fall 
generally between the two extremes (each often assumed naively) and more 
often nearer the srs end. Thus the covariances represent welcome and 
important reductions of design effects for variances of differences of 
crossclasses. 

Further simplification may be seen by introducing assumptions from 
(2.6.2) into (2.6.3) and using pooled estimates for s2 and for roh: 

This simple formula provides narrow limits when the last term is small 
because both roh, and the crossclass clusters nC/a and nh/a are small. The 
upper limit on the right is usually a “safe” overestimate because the neglected 
term - 2 cov(Y,., P h )  would probably introduce a greater decrease than the 
effects of using pooled values of s2 and roh,. 

Note, however, that perhaps we have been too symmetrical in discussing 
the variances of j C  and j h .  When n,. (and 2c) is much greater than n,, 
(and M b ) ,  the variance var (Yb)  will dominate the variancc var(7,. - jb ) .  
And in that case, deft2(jh) may approach 1 and var(j,. - yb) may simply 
approach sf /nh.  

Some technical, cautionary remarks are in order. To establish simple, 
useful, “portable” relations based on roh and 5 we had to overlook some 
complications that may well occur in some designs. The few clarifications 
that follow may help, but some situations may require more technical 
treatments [Kish 1965a; Kish and Frankel, 1974; Verma et al. 19801. 

1. Weighting for unequal selection probabilities can be handled by using 
the element weights for computing both the actual variances var(j7) and 
the sZ, but n in s2/n remains a simple count of cases. The deftZ and roh, 
will each include the effects both of clustering and of unequal weights. 
Separating the two effects would introduce more complex computa- 
tions, as would poststratification or ratio estimation. Note that highly 
divergent weights may cause great increases in variances and then 
values of deft2 will not approach srs variances even for small sample 
clusters bc .  Increases due to inejiicient weights tend to be inherited by 
crossclasses. 

2. Separating components of clustering from those of stratification, and 
each for several stages, would require technical resources that are 
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seldom used or justified. We depend on the simple and common 
techniques of “ultimate clusters” or “primary selections.” 

3 .  The cluster sizes b,, were assumed to be fairly equal and not too small. It 
would be difficult to state useful limits for these vague cautions. In case 
of doubt about the “portability” of roh, i t  may be checked with more 
complex computations. See Hansen, Hurwitz, Madow I, Section 6.8, 
12D. 

4. Diiwgent designs in diverse portions of the sample would interfere with 
using a single value of h .  For example, large clusters may be used in 
rural areas, and smaller segments or even single dwellings may be used 
in cities. Those situations may require separate computations for such 
divergent design domains. 

5 .  Overlapping crossclasses occur when some (or all) of n, is included in n b .  

These situations may need separate treatments that were neglected 
earlier. However, covariance computations can readily deal with them 
[Kish 1965a, Section 12.31. 

2.7 
ANALYTIC STUDIES 

FOUR OBSTACLES TO REPRESENTATION IN 

Many researchers agree to the need for (or, at  least, the desirability of) both 
types of randomizations: randomization of subjects over the population 
(representation), needed for enumerative (descriptive) studies, and ran- 
domization of subjects over treatments, desirable for analytic studies. But 
many agree to those two needs only separately; then they deny the need for 
randomized representation in analytical studies. 

In my view (1.4) multivariate relations, as well as univariate values, 
depend on their origins in individual elements, in population bases, and in 
their environments. The two needs for randomizations over treatments and 
over populations have similar sources. The two needs are not mutually 
exclusive, as they are assumed to be in the separate literatures of the designs 
of experiments and of surveys. The obstacles to randomized treatments, 
especially in broad populations, are well known (1.3). Here we call attention 
to four major obstacles to randomized representation for analytic studies. 
These studies involve generally the search for basic relations between 
variables; for causal relations from predictors to predictands; for etiological 
relations of stimulus or treatment to response; for inference and predictions 
to other populations, to subpopulations, and even to individuals. 

First, randomized representations for analytical studies are not common 
because often they seem too difficult, expensive, impractical, or unfeasible. 
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These obstacles are many, varied, and only seldom overcome (1.3). Even 
when feasible, the complex sample designs required often complicate the 
analysis, as noted under the third obstacle. 

Second, they face obstacles and resistance on social, moral, and ethical 
grounds. The double randomization over populations and over treatments 
faces questions of “fairness” and “informed consent,” especially in experi- 
ments with high risks of harm or unequal benefits; and also in “double-blind 
clinical trials” [Kleinbaum et al. 19821. It seems much easier to obtain for 
such experiments and trials the cooperation and understanding of some 
cohesive group, organization, university, clinic, community, site (3.1 A), or 
several sites for internal replication (3.1 B). 

Third, mathematical statistical difficulties pose formidable obstacles to 
handling exactly the double complexities of statistical analyses embedded in 
complex selections. The covariances of multivariate relations get enmeshed 
in other covariances (because of complex selection designs) between elements 
and between other sampling units of multistage sampling. Added to 
theoretical problems are computational difficulties. Only recently have we 
seen progress in joint work on theory and on modern computing techniques 
(7.1). Simple random selection would facilitate the mathematics, but it could 
greatly increase the difficulties of the first two obstacles. 

Fourth, because of those theoretical difficulties, sample survey theory 
was developed separately from the theory of experimental designs. It was 
developed to deal with descriptive statistics appropriate for enumerative uses 
of surveys, mostly for means and totals, and later for differences of means. 
Today, however, surveys are also being used increasingly for analytical 
statistics, and theoretical developments are now trying to catch up with 
practice (7.1). 

In addition to those four real obstacles, we also encounter another, which 
is more artificial, in the denials of the need for representation. Thus we may 
hear or read that randomized representation, while necessary for descriptive, 
enumerative surveys, is not needed for analytic studies. Deming has written 
clearly and eloquently since 1953 on this distinction: “The author distin- 
guishes between enumerative studies and analytic studies. An enumerative 
study has for its aim an estimate of the number of units of a frame that 
belongs to a specified class. An analytic study has for its aim a basis for 
action on the cause-system or the process, in order to improve products in the 
future” [Deming 19751. Descriptive and comparative studies are two other 
names used for this distinction, which reflects closely the divergence between 
emphasis on representation versus randomization in the literature on surveys 
versus experiments (1.3). However, I propose that enumerative surveys 
must also transcend, in aims and in uses, the frame population (2.1). On the 
other hand, analytical studies must also be concerned with the representa- 
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tiveness of experimental units to the population of inference of the causal 
system of relations (1.4). Thus I doubt the clear philosophical distinction. 
But I see practical distinctions. For example, the decrease of the importance 
of the bias term in Figure 2.4.1 should imply similar decreases for biases of 
representation. 

It is also said that the search for universally valid basic relations should be 
free of, and not conditional on, the population base of the sample. A similar, 
if less extreme view, holds that the “internal validity” of the sample is 
“primary to” (more important than) its “external validity” (3.5). This 
philosophical basis is similar to the “model-based’’ approaches of mathe- 
matical statisticians and econometricians (1.8), though these are mathe- 
matically more sophisticated-and, alas, more difficult to comprehend. 
Their theoretical basis is stronger mathematically, but not philosophically. 

Yet another unwanted obstacle is raised sometimes: What good are 
statistical validity and sampling errors from probability sampling if we are 
faced with larger errors and uncertainties due to measurement errors and to 
nonexperimental designs? This brings us back to our start with the need to 
compromise among the three criteria of realism, randomization, and repre- 
sentation ( I ,  1). We should not sacrifice representation unless we can gain as 
much (or more, for the same cost or effort) in measurement or in control of 
the design. We can view later (7.2F) the compromise broadly as planning the 
lowest “total error” or “mean square error” for the given situation and cost. 
Ironically this obstacle is just the reverse of the “attacks on statistics” in 1.8 
that call for more observations to reduce sampling errors. However, this 
obstacle has a weaker base for analytical studies than for descriptive 
statistics, because the sampling errors are larger and the effects of biases are 
typically smaller for the former. First, the sampling errors increase with 
decreased sampling bases for differences, and even more for double dif- 
ferences, etc. (e.g., Was the increase in hypertension greater for blacks than 
for whites? Was the difference in increases greater in the old than in the 
young?). Complex analyses quickly get into small cells. Then add the 
problem of fewer sites (3.1B). Second, the effects of measurement biases 
are usually less for the more complex comparisons and analyses, as in 
Figure 2.4.1 (7.2F). 

Despite all those practical, mathematical, and philosophical obstacles, we 
need not become discouraged. On one hand, surveys based on probability 
sampling are being used for ever deeper and more complex analyses. On the 
other hand, we must admit happily that even without randomized represen- 
tation, scientific studies have made great advances, sometimes with treatment 
randomization in experiments and also without it in observational studies. 
Medical sciences have made great discoveries with experiments on animals 
within laboratories and with observations and treatments of humans in 
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clinics. Perhaps in agricultural experiments even more knowledge is needed 
to apply results from plots and situations in one environment to other 
populations. In the social sciences most results are bound by culture, society, 
period, and environment. ( lhough sociologists are searching and arguing for 
universal traits.) In all the sciences and in all fields we must struggle to 
tramfer results from one population (or one set of them) to other, by using 
higher generalizations, scientific theories, and models. The lack of ran- 
domized representation, like other defects of induction, noted by Hume’s 
philosophy, will not stop the practical advances of the sciences. Scientists, 
like philosophers in a quip of Bertrand Russell, often do the right thing 
wl’thout knowing the reason. 

I t  is only rarely that we can achieve randomizations both over a large 
population and over treatments. We must aim at the feasible and consider 
strategic compromises and tradeoffs, but keeping both criteria of randomi- 
zation in mind. And we should neither deny a criterion nor elevate to a virtue 
those restrictions on it as are forced on us by practical limitations (I .3). 



CHAPTER 3 

Designs for Comparisons 
The Royal Society’s motto, Nullins in Verba, has been translated. “Take 
nobody’s word for it; seefor yourself” . . . To be an experiment an experience had 
to be repeutuble. Daniel Boorstin, The Discoverers. 

3.1 SUBSTITUTES FOR PROBABILITY SAMPLING 

3.1A Restricted Sites: Community Studies 

Confined research sites are often used to restrict samples to convenient and 
modest-sized populations. They may permit lower costs and easier practica- 
bility, especially for longitudinal projects spread over long periods. Good 
examples of these can be found in the series of health studies based in the 
cities of Framingham, Massachusetts; Hagerstown, Maryland; and Tecum- 
seh, Michigan. Those projects facilitate studies in depth of the connections 
and relations between diverse sets of variables, obtained in several studies 
spread over time. Such rich content also characterized pioneering social 
research sites, such as the Middletown of the Lynds in Muncie, Indiana; the 
early fertility studies of Indianapolis; and the long series of Detroit Area 
Studies. Much knowledge and insight have been gathered from those 
community studies, which were later applied on broader, national scales. 
Furthermore, a “site” in this discussion may also refer to a defined social 
organization-university, business firm, social club, labor union, etc.-as 
well as a community or local area. 

Attempts are commonly made to choose sites that are not only convenient 
and economical, but also somehow “typical,” sites that incorporate in 
“microcosm” a larger, perhaps national population. Such hopes would be 
more justified if that microcosm actually consisted of the equivalent of a 
representative (or random?) selection of elements from the larger, target 
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population. But the bases for such hopes are not firm or broad, and the gaps 
of inference to the target population (2.1) can become much greater than 
those for widespread or national samples. Nevertheless restricted research 
sites and studies of single communities can be justified on grounds of costs, 
economy, and feasibility, especially in evaluation studies (3.7). 

Those practical grounds for severe restrictions should not, however, be 
confused with attempts to make virtue out of that necessity, that is, with 
deliberate and drastic restrictions of studies to “homogeneous populations” 
or to “pure types” of elements (3. ICS). Such narrow restrictions-seeking to 
exclude perhaps some disturbing variables from the larger population-can 
seldom be justified on statistical grounds (see quote from Fisher in 1.3). The 
best statistical defenses of such restricted “monograph” studies date from 
around 1900, before the arrival of modern theories of randomization in 
surveys and experiments [O’Muircheartaigh and Wong 198 I]. 

We may admit that restricted sites may be clearly defined and often frames 
constructed for their entire populations readily obtained. However, in- 
ferences from them to larger, more meaningful national populations are 
much more difficult and tenuous (2.1). The dilemma can be highlighted by a 
complete coverage (census) from a restricted site: Few researchers, if any, 
would depend on complete coverage in order to forgo sampling errors, 
confidence intervals, and significance tests. Yet those probability statements 
acquire meaning only in the framework of some population or universe from 
which the sample elements can be supposed to have been selected. However, 
inferences to broader populations require models (1.8), and for bridging the 
gap from models to desired populations the restrictions of sites pose several 
handicaps. Local sites sacrifice broad (national) representation in space for 
the gains of depth in time, in richer variables, and in relations that can be 
discovered more fully and economically. Sometimes this trade-off is acknow- 
ledged by counterposing ‘‘longitudinal’’ to “cross-sectional” studies. How- 
ever, we must guard against the confusion between the two dimensions 
implicit in that contrast: Longitudinal studies sacrifice representation over 
space (the national target population) for better treatment over time, whereas 
single, cross-sectional, national studies sacrifice depth in time. Longitudinal 
studies of national cross sections can represent both the spatial and time 
dimensions; and neither dimension is covered in a one-time study on a 
restricted site (6.1-6.2). 

Furthermore, restricted sites also suffer from changing boundaries, and 
from “internal migration” of movers over local boundaries. Hence a major 
purpose of longitudinal studies, research on individual (micro) changes, 
tends to be frustrated. To follow movers beyond local boundaries becomes 
increasingly expensive over time, wasting some of the savings that motivate 
the use of restricted sites. On the other hand, if the study is confined to 
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nonmovers, it will become increasingly biased. Hence longitudinal studies in 
restricted sites generally tend to be concerned only with mean (i.e., net, 
macro-) changes. Furthermore, mean changes must also depend on assump- 
tions that the balance of immigration and outmigration reflects and is 
somehow representative of changes in the target (national) population, and 
that may be only wishful thinking. 

Single organizations as research sites present similar problems and 
concerns. A seemingly stable, fixed social unit suffers in- and outmigration of 
its people; this is true of universities, business firms, households, etc. The 
identity of organizations and communities over time is discussed in 6.3. 

Probability selection within sites does not fill the gap of inference from the 
sites to the target populations or to the populations of inference, but it  does 
fill another need for objectivity. Therefore probability selections within sites 
should be pursued, and they can often be achieved more readily and 
economically than for selections on a national scale. This advice goes for 
designs confined to small numbers of sites in 3.1 .B. 

3.1B Internal Replications: Several Sites 

Early in the planning of many research designs the limitations of a single site 
must be balanced against the costs of a national sample. The need for many 
sites (cities, counties, etc.) for national samples raises obstacles as frequently 
as the need for many individuals. Important results from single sites in 
medical research are quickly tested with replications on other sites because 
there are so many medical researchers. Such external replications are useful 
both when they tend to confirm valid new results and when they contradict 
them, raising cautions about early and dubious new results. For other 
examples, see the contradictions between election polls (7.6). But in social 
research external replications are usually more difficult, because variable 
conditions, situations, etc., make it more difficult either to confirm or to 
contradict “similar” results and because, alas, replications are not fashion- 
able. Instead we should look to internal replications within single research 
designs. 

Internal replications offer useful compromises between a single site and a 
national sample that could require, say, 100 sites, and they can serve diverse 
purposes (3.1C). A compromise solution may have 4 or 8 or even 16 sites, for 
example. The design may also call for pairing “treatments” with “controls” 
either within each site or with matched sites. For k replications, matching 
within sites would need k sets of sites, each to contain both treatments and 
“controls.” Sometimes this design is not feasible because the treatments must 
involve entire sites; then k replications of treatment plus control require 2k 
sites. Furthermore, for unbiased error computations based on random 
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replicates (to remove the between-sites components from the comparisons), 
we would need 4k sites for two random duplicates and 2mk sites for m 
random replicates. 

With few sites it would be vain to attempt representation with probability 
sampling of a population (1.4). Nevertheless we should try for wide spreads 
across important disturbing variables to obtain wider confirmation. Here 
we may apply a modern philosophical view: The choice of the sites should 
strain to increase the possibilities for “falsification” (7.6) [Popper 1959, 
Salmon 1967, Magee 19731. Thus four sites allow for representing highs 
and lows or treatments and controls for two variables; thus with Aja and 
B/h representing two treatments for two variables, the four sites will have 
AB-aB--Ah-ab. With “confounding” in “Latin squares” four sites can 
represent three variables, each balanced against the other two variables: 
ABC-aBc-Ahc-ahC. With nine sites three treatments, for each of four 
variables, can be accommodated by “Graeco-Latin squares.” We need not 
and cannot repeat here the advantages (and problems) of multifactor 
methods that have been richly developed for experimental designs [Cochran 
and Cox 1957; Cox 1958; Snedecor 1967; Anderson and Bancroft 19521. 

Similar and consistent results from the replications yield stronger con- 
firmation than a single site would. But if the results are discordant, the 
replications are too few to yield dependable inference; then further research 
is needed. Nevertheless, discordant results still yield a healthy skepticism 
that naive “success” from a single site would have obscured. 

3.1C Designs for Internal Replications 

We need to face questions of design concerned with the field of represen- 
tation intended for a few sites. Should the sites represent strata of the 
entire population, and should they be randomly selected? Or should the 
sites represent extremes of the variables, purposely chosen? 

1. Representative Domains. Probability sampling requires large numbers 
of sampling units, of sites as well as of elements. But when we are confined to 
a few sites we must depend to a considerably greater extent on model-based 
assumptions. The closest design to a probability sample would be its 
imitation: dividing the entire population into a,few diferent domains and then 
choosing within each domain a site, or a pair, or a set of sites. Thus the 
samples and the comparisons would be designed over diverse portions of 
the entire population, and the internal replications would be conducted over 
the full range of the population distribution. Three decisions seem most 
important here. 

First, how many sites can we afford altogether? Within that total, the 
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Figure 3.1.1. Selecting a single or a few sites to measure D = (x - v). 
is constant ( k )  over the control variable Z ,  any value (L ,  M ,  or 

H )  of Z will tend to yield similar values ( k )  of D .  Yet having two (or more) “modal” or “typical” 
sites ( M ,  and M,) would tend to reveal the “random” variation in dbetween sites, as symbolized 
by the bands around the expected values ( k ) .  The statistics d‘measured at  each site will also be 
subject to sampling variation within sites in measuring d. The constant expected value ( k )  
corresponds to a simple “additive random” model in experimental design. 

To discover a linear or monotonic relation of D to Z ,  at least two “extreme” sites, low and 
high ( L  and H ) ,  are needed; and at  last two sites at each extreme to separate the variation in site 
values dfrom the functional relation of D. With a strong linear model, the slope of the regression 
line of D on Z may also be estimated. The mean of sites values may also be a “fair” estimate of 
the average effect B,  which may be a principal aim of the study. This may also be strengthened 
with three (L ,  M ,  H )  sites or more, selected so as to represent different values of the disturbing 
variable(s) Z, and such designs may also discover relations that are not linear, or not even 
monotonic. 

Another extension should consider variations in D with more than one variable Z ,  but this 
would be more difficult to represent on this flat page. Such considerations lead to LIHdesigns in 
2, 3, 4, or more dimensions of 2 x 2 x . . . designs. 

When the effect D = X - 

number of sites per domain, hence the number of domains, must be decided 
(3.1 D). 

Second, how should the population be divided into separate domains? 
This may pose dilemmas because the distributions of relevant stratifying 
variables are usually not even and smooth: Their meaningful cutting points 
may be located near one or both ends of a continuum, or even at  several 
places along a line. Dividing near the extremes can result in loss of 
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representation of the population; though representation can be recovered 
with reweighting, it may be too costly in increased variances (7.4). On the 
other hand, dividing into roughly equal domains may sacrifice meaningful 
distributions of the stratifying variables. This dilemma often becomes 
exacerbated by the need for several stratifying variables [Kish 1965a, 3.6; 
Kish and Anderson 19781. 

Third, should the selection of sites from within the domains be done with 
probability sampling? For a small number of sites the case for probability 
selection is weak. But that case may become strengthened by the desires 
(a) for representing the entire population, as against the aims of the other 
designs (2, 3, 4); (b) for larger numbers of sites; (c) and for public presen- 
tation. Controlled selections or Latin-square designs may satisfy both 
probability sampling and the needs of multivariate stratification (7.2F) [Kish 
1965a, 12.81. 

2. In 3.1A we discussed the frequent use of 
and justifications for single restricted sites for research. The reader probably 
can find other good examples from experience and reading; hence we need 
not elaborate on them. The choice, deliberate and judgmental, of single sites 
becomes in most situations aimed at  a “typical,” hence modal or average, 
unit (city, community, school, etc.). It comes as a disappointment sometimes 
that statistics and sampling can contribute so little technically to the choice 
of single sites; yet an experienced statistician and sampler can help with a 
creative, philosophical dialogue. The difficulties may be illustrated by trying 
to agree on an “average city” in the United States-clearly not New York, 
Boston, Philadelphia, Washington, Miami, Los Angeles, San Francisco, etc. 
Is Muncie, Indiana, “modal,” even though more people live in “places like 
New York”? 

An average or modal site is chosen to serve as “representative” of 
conditions related to the study, although that aim may be veiled modestly 
with the double negative of “not unrepresentative” or even with a false 
disclaimer like, “The single site cannot be representative, yet. . . .” One 
should accept the site as the target population, then face the chasm to the 
desired inferential populations (2.1) and describe a model for the meaning of 
“representative” (1.7, 1.8). 

Several “average” sites may be chosen for internal replications and a 
pair or several pairs may be chosen for treatment/control comparisons, or 
k-tuples for k treatments. The choice of average sites usually involves 
“balancing” along several control variables. 

Typical, Modal, Average Sites. 

3. Contrasting, Extreme Replications. Instead of one or more average 
sites, the aims of “falsifability” seem better served with tests obtained in 
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contrasting conditions (3.1 B, Fig. 3. I .  I ,  7.6). When we can assume a possibly 
linear, or merely monotonic, relation from the stratifier (control) variables to 
the research (explanatory) variables, we can gain a more robust test of 
falsifiability and a stronger confirmation from extreme units than from 
intermediate or “representative units.” For models of linear regressions the 
image is clear and well known: The end points of the regression line provide 
optimal allocations for sample points to measure with highest reliability the 
slope of the linear regression. High versus low extremes yield better tests than 
would “representative” selections obtained within a complete division of the 
population into high and low halves, as in 1 above. The extremes are more 
informative than either random or modal or centralized selections from the 
halves would be. This is also true for monotonic relations generally, not only 
for linear regressions. The extremes also provide more informative tests than 
would one or two average or modal selections, as in 2 above. 

If both high and low units (sites) yield similar results for treatment/control 
comparisons, we gain indications of no effects from the stratifier: a flat slope 
for the regression line. On the other hand, differences between the effects 
indicate a slope for a linear or monotonic relationship. 

For less reliance on linear (or monotonic) relations we may want to 
sample more than the two extreme points (units, sites), and a third unit 
(site) near the center may well appear useful. Effects near the center that 
approximate an average of the two extremes would tend to indicate linearity 
(or at least monotonicity). On the other hand, divergent and contradictory 
results may indicate a curvilinear or complex relation, the need for more sites 
to identify and quantify the relationship, for better and more control of 
disturbing variables, and perhaps for probability sampling of the entire 
population. Probability sampling on many sites should be designed for the 
estimation of average effects over the entire populations of inference. 

4. Distinct, Divergent Replications. Distinct, divergent replication may be 
designed specifically to submit theories (hypotheses, conjectures, relations, 
treatments, comparisons) to the most difficult tests of falsification-but 
perhaps without any specified model of linear or monotonic relationship. 
This merely restates the aims of internal replications (3.1B): Using only one 
site or a few sites of one specific type would lead us to the meager results of 
3. I A ,  and good statistical design calls for diversification over disturbing 
variables. A large number of sites would permit a complex multifactor 
(factorial) experimental design or a probability sample over the population 
and its major domains. 

5. Experimental Designs. Dozens of books on the subject of experimental 
design are available a t  different levels of depth and difficulty, applied to most 
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fields of research. Most books are longer than mine, and I cannot find a 
sensible way to broach the subject briefly. The designs of experiments have 
also been applied to observational studies. Representation of the population 
is difficult in experiments, as we noted. But the multiple controls on few sites 
that “Latin-squares’’ permit have their analogy in survey sampling in 
“multiple stratification” (controlled selection, deep stratification) (7.1 .D) 
[Kish 1965, 12.8; Cochran 1977, 5A.51. 

3.1D Number of Sites 

We assume here that the total number s of sites (units) must be narrowly 
limited because of high costs per site. Thus we need to discuss briefly the 
relations between the numbers of treatments t ,  the numbers of domains d, 
and the numbers of replicates r for each treatment within domains. With the 
total number number s = t x d x Y of sites severely limited, the more we 
take of one component, the less we get of others. Instead of symmetrical 
designs we may have different numbers of replicates and treatments in 
domains represented by C,t,r;. The number of treatments can be as low as 1, 
or 2 for treatment plus control. The number of domains was discussed briefly 
in 3.1C; we focus here on the numbers of replicates for treatments ’I, and for 
controls I;.. The number of observations (individuals, elements) at each site is 
also important, but that subject can be treated better separately in connection 
with the kind of analyses, both substantive and statistical, planned for the 
data. Some alternative designs are sketched below; based on technical con- 
siderations, their application should depend on resources, situations, and 
models that can differ greatly. 

Match d treatments with more controls (d  x r,) when controls are less 
expensive. This needs d(r, + I )  sites for d domains. Rigidly symmetrical 
assumptions have restricted many studies to d pairs of treatment/control 
comparisons, even when much lower costs would allow for many more 
controls. Several (r,)  controls in each domain reduce the errors of the 
controls, and they also allow the computation of between-site errors with 
d(r,. - 1) degrees of freedom. Here we may also need to overcome a 
common inertia for choosing as controls those sites that seem “closest” (most 
similar) to the treatment sites; however, in most situations several (or many) 
sites may be almost as close. Perhaps construct domains of ( r ,  -t 1) “similar” 
sites; choose (at random) one site for treatment and use the other r, sites for 
controls. For example, if a population of 420 sites is sorted into d = 4 
domains of 105 sites each, each treatment from the four domains may be 
matched with r = 10 controls in a total of 4(10 + 1) = 44 sites. 

Consider r,  treatment sites and rc control sites in each domain. This would 
permit reduction of errors for both treatments and controls; also the 
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measurement of between-sites errors for both, with (r,  - 1) and (r,  - 1 )  
degrees of freedom. This must be balanced against needs for more domains, 
and for more than two treatments, as well as against limits on total number 
of sites. Consider r, = 2 for a design with a total of (2 + r,)d sites. In the 
preceding example we could have r, = 2 treatment sites and r,. = 10 control 
sites for a total of eight treatment and 40 control sites in the four domains. 

Consider treatments and controls from the same sites, if the applications of 
treatments and of measurement permit. This should yield good gains, both 
by allowing for more domains for both (or all) treatments and by eliminating 
or reducing the effects of between-site variation from the comparisons. 
Within the sites, large numbers of sampling units often may be used 
efficiently. On the contrary, when separate sites are needed for each treatment 
and control, the number of sites becomes too large for several variables d .  
Thus for treatment/control pairs we need 2* = 4 sites for high/low domain 
for one variable; and 2d.  2 = 2dt‘ sites for high/low and treatment/control 
pairs for d domain variables. For t treatments and r replicates we would need 
tr2“ for high/low contrasts for d variables. However, these numbers can be 
reduced with Latin-square and “fractional factorial” experimental designs. 

3.2 BASIC MODULES FOR COMPARISONS 

3.2A 

Controlled observations and quasi-experimental designs have a wide but 
diffuse literature in the social and medical sciences. That diffuseness contrasts 
with the two distinct and compact literatures for experimental designs and 
for sample surveys. Each of these can present basic tools in a compact 
introductory treatment, but only by narrowly limiting its objectives and by 
using strong assumptions. Each field made fast progress in 50 years by 
traveling on a well-paved narrow avenue. However, the literature of 
controlled observations is far more diffuse, because it reflects the varied and 
amorphous nature of the area it covers. 

I believe this subject also needs an introduction that is both general and 
compact, so that i t  can be taught and learned. With the following design 
modules I aim to encompass this diffuse, general area in a simple, compact 
presentation and with a minimal set of clear symbols. These modules will let 
us build (in 3.4) the more complex research designs that are commonly used. 
Furthermore, this method of modular design facilitates the evaluation of 
those designs. Our treatment should be comprehensive and include all basic 
aspects of good design in order to be useful in practice. Such a comprehensive 
treatment of all aspects, even if superficial, is more useful for an introduction 

Principal Features of the Modules 
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than the typical thorough treatment in depth of just a single aspect. 
Essentially the simple modules combine the variance components of experi- 
mental designs with cost components and then join them with the bias 
components associated with observational studies; then the modules become 
building blocks for study designs. The following basic features of these four 
modules use drastic simplifications that are necessary to encompass simply 
the diverse aspects of designs and to permit comparisons. 

1. Four modules are dejined in terms of their mean square errors: MSE = 
variance + bias2, for assessing the relative accuracies of the modules. 
With each module we associate specified factors of unit variances and 
unit costs, as well as specified major sources of bias. This joint 
comprehension of variances, costs, and biases makes these modules 
useful as building units for comparative analyses of complex designs. 

2. Research designs are built from the four modules. The building process is 
exemplified by the five most common basic research designs in 
Section 3.4.  Other and more complex designs can also be built from 
more combinations, and from modifications of these modules. The 
relative problems and the advantages of the complex research designs 
can be readily assessed in terms of their simple component modules. 

3. Bias is specijied in four major types. This intermediate step facilitates the 
introduction of the 22 classes of actually recognizable forms of bias 
later (3.5). Those types and these classes serve to bridge the vast gap 
between a single, general, unspecified bias term and the myriad specific 
actual biases one can conceive and sometimes even measure. Occur- 
rences of the major types differ between modules, therefore also 
between designs; thus those differences facilitate comparisons of bias 
types between designs. 

4. Research designs are distinguished by clear patterns of variances, costs, 
and bias types. These follow from the modules used for constructing the 
research designs and from the clear association of variance, cost, and 
bias terms with the modules. Most bias terms concern only controlled 
observations and vanish from the corresponding designs of randomized 
experiments. 

5. The modules, symbols, and terms are related to and clarify the literature 
on controlled observations. These follow the concepts for designs and 
for sources of bias used by Campbell [1957, 19631 and by others before 
and after him. However, that literature concentrates on biases only, 
whereas 1 introduce variances and costs also. They can also be related 
to the concepts of experimental designs; but these typically concentrate 
on variances and neglect the presence of biases of nonrandomization. 
Links to the concepts of survey sampling are also noted below (3.2B). 
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6 .  Variances and costs are presented in simple relative terms for comparing 
research designs. Complicated nuisance parameters are isolated and 
postponed so that the modules and the designs can be compared with 
only two parameters: Vi for variances and k j  for costs as factors specific 
to the modules i .  Variance components are ViS2 /n  and cost compo- 
nents are cnki; the Viki (and four bias symbols) are used to compare 
modules and designs, because the n, S2, and c cancel in relative 
comparisons. This economy of symbols permits wide generality yet 
simplicity at the same time. The postponed complications of practical 
situations can be reintroduced later in the 22 classes of biases (3.5) and 
in enlargements on the limitations (7.2). 

3.2B Limitations of the Modules and Symbols 

For simplicity in the presentation and comparisons of modules and designs 
some limitations had to be introduced. These limitations occur in the 
literature either implicitly or hidden by unreal assumptions, but I prefer 
to expose them openly, even if briefly here. We shall later (7.2) consider 
methods for relaxing all these limitations in order to serve with greater 
generality more realistic and complex designs. 

1.  Diferences of pairs of means (X - j7) are used for  the comparisons. 
These are the simplest and the most common forms used for comparing 
treatments in controlled observations, in experimental designs, and in 
sample surveys; for example, for comparisons of A-B treatment 
means, with-without means, subclass means, before-after means, etc. 
Furthermore, the results for (X - j j )  we develop here to compare 
research designs can also be readily applied, with only simple modific- 
ations, to other comparisons: to ratios of means; to ratios of ratios; to 
differences among several means; etc. 

2 .  Equal sample sizes n are used for  the two means. This kind of 
symmetrical design seems simple and common; perhaps they are too 
common, because departure from equality and symmetry may be 
desirable (3.1D). Our modules can be readily modified to fit the 
different sizes. 

3 .  Simple random selection is implicit in the variances S 2 / n  for  the means. 
This assumption underlies accepting S 2  as the variance of elements in 
the population. But that limitation can be overcome by introducing 
design effects D? to modify the variances, and then we can have 
Sz = DfSf.  Thus the variations in element variances S2 and design 
effects 0: can be considered separately. This scheme can also facilitate 
the treatment of more complex and different cost factors ci. 
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4. Representation of the population (s) with probability sampling is treated 
separately (1.7, 1.8). It would detract from the simplicity of the symbols 
for modules to burden them with this task also; a separate treatment 
better serves our aims. But four sources of bias for representing 
populations are noted among the 22 sources later (3.5). 

5 .  The jive basic research designs considered here (3 .4 )  are the simplest, 
most used, and most practical. But the modules and the methods can 
also be expanded to more complex research designs. 

6 .  Mean squared errors are used for a combined view of biases with variance 
and cost factors. They perform rather well when biases can be assessed 
approximately in relation to the sampling variance and when the 
distribution of the means is approximately normal. This is the most 
common and useful approach to combining these two distinct types of 
errors, but other approaches are theoretically conceivable. 

3.2C An Example of Relative Cost Factors 

This example precedes the formal development in 3.3 of factors and modules 
for those of us who can more readily perceive a specific, numerical example 
and then follow better the abstract presentation. Others may postpone this to 
the end of 3.3. 

Cost factors are symbolically combined with variances, so that these may 
be used to compare diverse designs for any,fixed aggregate cost. The factors 
are fixed symbolically only so that the comparisons are valid for varying 
levels of actual expenditures. The basic cost factor, fixed at k ,  = I for 
convenient comparisons, is for the indispensable core module, which is 
common to all the designs: It contains n experimental elements, and its cost 
is cn, where c = ck,  is the element cost of the “experimental” (treatment) 
observations. The other factors k ,  are made relative to the basic, common 
factor k ,  = I .  

Next, for example, consider a design based on n treatment plus n control 
elements for an aggregate cost of cn + c,n = cn[l + k,] ,  where c ,  = ck, is 
the element cost for the “controls.” The cost factor for introducing the 
controls is [1 + k 3 ] ,  where c, = ck,. Thus in comparison with the variance 
S2/n for the basic design, the variance of a “control group comparison” is 
seen as Var (design 3) = 2(S2/n)[1 + k,];  to keep the total cost constant in 
the comparison, the sample size is decreased, hence the variance increased, by 
the factor [l + k,] .  When the controls cost as much per element as the 
treatments k ,  = I ,  and the introduction of controls is seen to increase the 
variance, for fixed total cost, by 2[1 + k,]  = 2 x 2 = 4. When controls are 
free, k ,  = 0, and controls increase the variance by a factor of 2 only. 
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Generally the element cost for controls is not greater than for treatments, but 
they cost something, thus 0 I k ,  I 1 .  

For example, suppose that c = ck ,  = $100 for experimental treatment 
plus testing the aftereffects per subject included (and persuaded to partici- 
pate) in the experiment. Suppose also that the control cases cost somewhat 
less: ck, = $60 per subject in the control, because $40 represents the 
extra cost of the experimental treatment. Then k ,  = 60/100 = 0.6 and 
[ I  + k3]  = 1.6. Thus the variance of design 3 is increased by 
2[1 + k,] = 3.2 over the basic design 1. Hence for a $xed total cost of 
$32,000 we can buy (200 treatments x $100) plus (200 controls X $60) = 
$32,000, and the variance of 200 pairs is 2S2/200 = S2/100. However, with 
design 1 we could afford 320 subjects, since 320 x $100 = $32,000; and its 
variance would be S2/320. Thus the variance of design 3 is 320/100 = 3.2 
greater for the same fixed cost. Alternatively (but less realistically), one 
may insist on a desired $xed variance; for example, on a desired S2/100 
for the difference of the two means. Design 1 would obtain this for 
100 x $100 = $10,000, whereas design 3 would need the $32,000, as 
earlier and the contrast of the two costs for a fixed variance is again in the 
ratio of 3.2. 

Thus either for fixed costs or for fixed variances this modular presen- 
tation, in terms of unit cost x unit variance, can readily contrast the relative 
efficiencies of research designs. In the presence of estimated biases we may use 
the mean squared errors to also include estimates for biases squared along 
with the variances. 

3.3 FOUR MODULES: COSTS, VARIANCES, BIAS SOURCES 

3.3A Costs and Variances 

These four modules serve as building blocks for research designs; first and 
foremost for the five most common basic designs in 3.4, but potentially for 
other and more complex designs as well. We need symbols for these modules 
that will be (1) simple, (2) descriptive of their functions, and (3) in tune with 
the literature on this subject. I propose the following symbols for the 
modules. 

I. [ .Ex]  = Experimental treatments ( E )  followed by observations (x). 
11. [XE.?] = Experimental treatments ( E )  with pretest (A') and 

posttests ( 2 ) .  
111. [.Oh] = Controls (0) followed by observations (b). 
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IV. [Bob”] = Controls (0) with pretests ( B )  and posttests (6).  
IIIR. [ .0c ]  = Randomized controls (0) followed by observations (c). 
IVR. [Car?] = Randomized controls (0) with pretests (C) and posttests 

(2). 

E denotes the experimental treatment and 0 the control, which may be 
none, or standard, or placebo. But we distinguish with 0 research designs 
when true randomization is used to separate the experimental subjects from 
the control subjects. In the experimental group, X denotes observations 
before treatment and (.) its absence; and 2 or x distinguish observations after 
treatment in the two cases. The corresponding symbols in the control group 
are B or (.) for with/without observations before control treatments, and b” or 
b distinguish observations after control treatment in the two cases. These are 
C and t for randomized controls (Table 3.3.1). 

Pretest and posttest are terms used in the literature to denote pretreatment 
(or precontrol) observations and posttreatment observations, respectively. 
Thus I shall also use those brief and common terms, despite their inaccuracy: 
The pre- and the post-actually denote the timing of the observations (tests) 
before and after the administration of treatments, not of tests. Furthermore, 
observations is a more adequate and general term than tests, which comes 
from educational research. The word pretest is also confusing because in 
survey literature it refers to small samples for trying out methods, especially 
to field trials of questionnaires, sometimes also called “pilot studies.” 

The pretest and the posttest may be similar or they may differ. The pretest 
may be simple and spare, or it may consist of elaborate multivariate 
measurements. Posttests may vary even more, and they may denote a whole 
series of observations designed to search for longer-range effects of the 
treatments (3.6). Treatments also may be complex, drawn out, and repeated. 

The sequence Ex denotes experimental treatment followed by obser- 
vation. This is the fundamental, basic unit present in all research designs. 
Because of that omnipresence we use its cost as the basic unit cost c k , ,  so that 
all other unit costs can be treated as relative to this basic cost factor with 
k ,  = 1. 1 created this convenient symbol to serve for comparing the relative 
unit costs of other modules, and later of research designs. The basic element 
cost c = c k ,  denotes the unit cost for each of the n elements, and for n 
elements the costs come to cn. This is also the cost of the basic module I, 
symbolized by [ .Ex] .  The actual composition of ck ,  is complex: cnk, must 
include the selection and recruitment of the n subjects plus the experimental 
treatments plus the posttreatment observations. I believe this complexity is 
worthwhile because it helps to simplify the comparisons with the other 
modules, and later the comparisons among research designs. Of course it can 
be decomposed into its components when the occasion warrants the effort. 
its actual value may have to be thus composed from such components. 
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The cost of module 11, [XEX], includes the cost ck, of pretests in addition 
to the basic unit cost of ck,. The cost for n elements for module I1 is therefore 
cn[k, + I ] .  The unit cost ck, of pretests should be less than the basic cost 
ck , ,  which includes, in addition to the postobservation, the cost of selection 
and of experimental treatment. Hence 0 < k ,  < 1 expresses wide boun- 
daries within which the researcher should try for a useful estimate. If the 
pretests are very cheap, as a ratio of kl  with its expensive selection and 
treatment plus posttests, k ,  may be near zero. Values of k2  near 1 would arise 
only when the observations X and 2 are equally expensive, whereas selection 
and treatment are relatively very cheap. 

Module 111, [.Ob], involves selecting the n elements and obtaining 
cooperation from and observations on them, with unit cost ck,, compared 
with ck, for Module I. The control treatment (0) may be less costly than the 
experimental treatment ( E ) .  We should search for k ,  within the likely 
boundaries of 0 < k, < 1. Values near 1 denote equal unit costs for control 
and experimental treatments, at  least compared to costs of selection and 
observation. Values of k ,  > 1 would mean that the control is more 
expensive than the treatment in k , ,  and this is unlikely but possible. Values 
near 0 would denote the predominance of the cost of experimental treatments 
over all other costs. 

Module IV, [BOB], adds the cost ck, of pretests to the cost ck, of 
Module 111, and for n observations we have cn[k, + k,].  This factor 
[k ,  + k,] resembles [k, + I] for module 11, and it is likely that ck, = ck, 
and k ,  = k,,  the additional cost of a pretest in each case. Putting it 
all together for completeness, we suggest that commonly 0 < k 2  = 
k ,  < k ,  < 1 ,  and that often we may be able to obtain or guess numerical 
values for the inequalities, which will be useful though inaccurate. 

' It seems difficult to estimate the additional cost of randomized treatments in 
modules IIIR and IVR. Were we to force the cost of randomization into the 
four k j  cost factors, we should include it in k ,  because the cost of 
randomization arises only with the introduction of control treatments. In 
that case, instances of k,  > 1 could easily occur. But I think that treatment 
randomization does not fit k ,  because it is not a unit cost proportional to the 
number of cases. It seems closer to a fixed cost, independent of n, which can 
be added as (RdT) to the research design. 

It would be even less feasible to include randomized selection over the 
population in the k , ,  and I propose a separate constant (RU'S) for that. 
Furthermore, it seems likely that often the two constants will not be 
independent, that joint randomization both over treatments and over 
populations would be more costly than just the sum of the two costs. That is 
why researchers choose either experiments or survey sampling, but seldom 
both (1.1). 
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Variance factors are best viewed together with cost factors. Modules I and 
I11 each concern the simple element variance S2. This is the basic unit 
variance for the modules and the variance of each mean is S Z / n .  In a 
“control group” design (3) we take the difference [ .Ex]  - [ .06]  of the two 
means; hence the variance of that difference is the sum 2SZ/n  for the 
variances of two independent means. The cost for the design comes to 
cn + cnk, = cn[l + k,] .  For example, suppose the basic unit cost of [.Ex] is 
ck ,  = c = $100, and the unit cost of [.Oh] is ck, = $60; then k ,  = 0.60 
and [l  + k,] = 1.60. However, in contrast with the “one-shot’’ design [ .Ex] ,  
we must note that the “control group” design [.Ex] - [.Ob] also increased 
the variance by a factor of 2. The joint increase of the variance and cost 
factors has the ratio of 2Sz[1 + k , ] / S z [ l ]  = 2[1 + k,]  = 2[1.6] = 3.2. 
This represents, regardless of sample size n, the statistical efficiency: either 
relative variances for fixed cost or relative costs for fixed variance (as in 
3.2C). This explains our use of the products of unit variance with unit cost 
factors for assessing relative statistical efficiency of modules and research 
designs. 

Modules I1 and IV involve the difference between the pretest and posttest 
observations. Therefore the basic unit variance for these modules becomes 
[Sz + Sz - 2RSz] = 2(1 - R ) S z ,  where R is the correlation coefficient 
between pretest and posttest observation on the same elements. Compared 
with the basic unit variance of S2 for modules I and 111 we note here a factor 
of 2(1 - R). This denotes a decrease in the basic unit variance when the 
correlation R > 0.5. Since correlations on the same elements are often high, 
taking pretests can often decrease unit variances. However, we must also 
consider the added unit costs of the pretests, which are in the ratio of 
(1 + k2)/(l) for module I1 and (k ,  + k4) / (k3 )  for module IV. Taking the 
products of the basic unit variance and cost factors, we note the ratio of 
2( 1 - R)( 1 + k , )  for the pretested experimental treatments with module I1 
compared with module I; and 2(1 - R)(k ,  + k4) / (k3)  for control treat- 
ments with module IV over module 111. Again these contrasts of statistical 
efficiency hold (regardless of the sample sizes n) both for variances with fixed 
costs and for costs with fixed variances. Statistical e8ciency is the term I use 
to denote jointly the effects of unit costs and variances, but omitting biases. 
Thus we postponed considerations of biases in the mean square errors. 

3.3B Biases: Four Major Types 

Now we come to our major and most difficult problem: a symbolic 
representation for the major types of biases, so that we may consider them 
jointly with variances in mean square errors = biasZ + variance. To write 
merely bias2 is too distant from the specific sources of the biases in specific 
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studies. We must choose a convenient level on the abstract/specific con- 
tinuum to retain simplicity yet to seek usefulness too. Five levels of 
specification descending from the most abstract to the most specific can be 
designated. 

I. Bias in general 
11. Four major types of bias: E, M ,  T, P and their interactions 

111. 22 classified sources of bias in all fields 
IV. Types of bias specific within fields of study 
V. Specific biases for specific studies 

For present purposes level I1 seems the most useful; it creates distinct 
patterns for the four modules (Table 3.3.1) and for research designs. Thus 
that level is effective yet simple, since dealing with four major types plus their 
interactions is not too complicated, and it also resembles some other 
treatments (Ross and Smith 1968; Namboodiri 19701. Later (3.5) we can 
trace these four major types plus two others to the 22 classified sources of 
bias at level 111. These in turn are still general enough to serve any field of 
research, yet specific enough to direct the researcher’s attention to specific 
problems. These 22 sources on level I11 follow, in a modified form, the 
“twelve threats to validity” in the established literature [Campbell 1957; 
Campbell and Stanley 1963; Cook and Campbell 19791. 

Level IV could be even more useful for any specific field of study and for 
specific techniques of research. For that level of specialization one can 
describe specific types and values of biases based on actual experiences and 
discuss reasonable expectations. Further down at  level V one would discuss 
biases based on the actual working grounds of specific studies. However, to 
cover a wider area we must operate on the more general yet descriptive 
level 111, but begin at level 11 with the four major types. We must understand 
that these bias types, E, M ,  T, and P, represent “expected” values, i.e., 
averages in the population, and that values for individual subjects are subject 
to variation. Even their values for sample means can be assessed only with 
sampling errors, if at all. 

E denotes the experimental treatment as a net effect in contrast to 0 effect 
for the “control.” It is not properly a source of “bias” in the usual sense, but 
it must compete for measurement with the biases, the disturbing factors (1.2). 
Hence, for dealing with our symbols, E must be listed among the biasing 
effects. This brief symbol E may oversimplify what actually occurs in many 
situations, and we may consider E = Ei - Ej as the difference of two 
distinct treatments. In any case, E and E, = E + ET symbolize the 
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separation of the predictand variable from the disturbing variables, which 
are denoted by the bias sources M ,  T, and P. 

M refers to the group mean before the treatments E or 0 at the time of the 
pretest observation, which we denote with X or B, or with (.) if without 
pretest. This is a source of possible bias ( M ,  - M b )  for nonrandomized 
designs, but for randomized experiments ( M ,  - Mb) should average to zero 
in expectation. Even when omitted for brevity, the subscripts are implicitly 
present for the designs. We assume the same values of M, and Mb for 
posttests as for pretests, because T, and Th are used to carry the changes 
over time between them. 

T denotes effects of disturbing variables (history, maturation, mortality, 
instrumentation in 3.5) that occur in, and depend on, the time elapsed 
between pretest and posttest observations. We may also consider (T,  - Tb) 
for denoting the differential effects of elapsed time for nonrandomized 
comparisons. This explicit introduction of time effects is an important 
contribution of our model to elementary statistical presentations, because it 
may often be of practical importance in research. 

P denotes the effects of pretests on subjects. In educational psychology 
we read of traditional concern with these effects, either as direct learning 
experience or as a factor that motivates learning behavior. I include it to be 
consistent with that literature and for caution, but I believe it usually to be 
negligible in comparison with the effects of E, M ,  and T. 

Each module results in a distinct set of bias terms; then, by building the 
research designs from these modules, we can associate these designs with 
those distinct bias terms (3.4). Those bias terms lead us in turn readily to the 
associated list of biases (3.5). This conceptualization on two levels seems to 
me much more convenient and heuristic than a separate verbal recital of the 
many possible distinct biases for each research design would be. 

ET, PT, and EPT symbolize interaction terms that can be conceptualized 
separately [Ross and Smith 19681. For example, ET denotes the possibility 
that experimental effects may interact with outside effects during the test 
period; EPT that experimental and pretest effects and the mere passage of 
time may all interact. However, these interaction terms unduly complicate 
the comparisons of biases; and furthermore the effects of time’s passage 
cannot readily be separated in practice. Without sacrificing accuracy, we can 
reduce by three the number of explicit terms by combining the interaction 
terms induced by the passage of time. Thus we shall use E, = ( E  + ET), 
P ,  = ( P  + PT),  and EP, = (EP + EPT). Furthermore, we suspect that P, 
and EP, are seldom important or measurable. 

The expected (or mean) value for [.Uhj of module I11 is ( M  + T)b, 
whereas for [ .Ex]  of module I it is ( M  + E,  + T),, including the experi- 
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mental effect. For [ B o g ]  of module IV it is ( T  + and for (XEZ) of 
module I1 it is (E,  + T + P, + EP,),.. We can expand fully this longest 
model as an example 

Exp[.f - XI = E + T + P + ET + EP + P T  + EPT 

= ( E  + E T )  + T + ( P  + P T )  + (EP + EPT)  

= E, + T + P, + (EP) , .  

These are expected, i.e., average, effects from universes of similar 
individual observations on elements. For example, the effect for single pretest 
observations of module I1 can be denoted as Xi = X + E ~ ,  for an empirical 
value with random error. The expected or mean values of the Xi values is M, 
both before and after treatment and they cancel out; the effect of time’s 
passage on the mean M ,  is taken on by T,. 

The E, include both individual deviations and errors of observations, 
representing the residual variation unaccounted for by the systematic effects 
of the other sources, denoted as mean biases. The E~ are assumed to have no 
interaction and no covariance with those other effects. In the population (or 
universe) they are assumed to have mean value of zero, and a mean square 
value of Sz. The actual effect of this random variation on specific samples is 
an unknown random variable; but its expectation is zero and its squared 
expectation is Sz per element in the variances for the modules and for 
research designs. It contributes S 2 / n  to the mean square error of a single 
mean based on n observations, as in modules I and 111. To the corre- 
lated n pairs of observations of modules I1 and IV it contributes 
( S 2  + Sz - 2RSZ)/n = 2S2(I - R)/n.  

This simple error structure is brief and prevalent in the literature. With its 
assumptions it avoids some complexities of the real world. The error S Z / n  
assumes simple random samples of n elements; this can be adjusted for with 
design effects (7.1). Instead of a simple error term q, it would be more 
realistic to pose error terms for each of the four component sources. 
However, the separate measurement and analysis of each of the components 
would take us into complicated statistical analyses and away from our 
principal goals. 

3.4 FIVE BASIC DESIGNS FOR COMPARISONS 

3.4A One-Shot Case Study: [.Ex] 

“This design does not merit the title of experiment, and is introduced only as 
reference point” [Campbell, 19571. The “one-shot’’ study refers to simple 



3.4 FIVE BASIC DESIGNS FOR COMPARISONS 69 

means (or medians, rates, or other descriptive statistics) based on the 
treatment groups E, without an explicit control group 0 in the design. The 
symbol E denotes some “experimental treatment” that precedes the measure- 
ments, whose results are observed by x. Design 1 without explicit controls 
receives no standing or defense in the literature. However, in practical work 
the means, proportions, and rates of interesting groups often serve as sources 
for new research ideas and further investigations and even as bases for 
tentative conclusions. The result x of the experimental treatment is usually 
compared with some standard base or bases computed from recognized 
population data, from models and projections from theory, or from 
subjective estimates and guesses. The comparisons may be made explicit, but 
they are more often merely left implicit. 

Consider several examples. ( I )  The quality of a new batch (perhaps using 
new materials or processes) of a manufactured product (say electric bulbs) 
is compared with well-accepted standards, perhaps based on continuous 
process control. Such is the basis of quality control in manufacturing. (2) An 
intensive family planning program is introduced into a “typical” province; 
later the province’s birth rates are compared with those of similar but 
“untreated” provinces. (3) Birth rates of special ethnic or religious groups or 
other subclasses are contrasted with accepted standard rates for comparable 
populations. (4) Mortality and morbidity rates of a special group are 
contrasted with accepted standard rates from the entire population or from 
comparable subclasses. In (1) and (2) the experimental treatments are 
deliberately introduced, and efforts can be made perhaps to randomize that 
introduction over the entire population, or to design some useful substitute 
(3.1). In (3) and (4) the E represents only observed predictor variables, and 
the study merely takes advantage of observed differences in the population. 
In both cases, if the predictor (“experimental” E )  population is much larger 
than the study both needs and can afford, a sample design is suggested. One 
should try then for a probability selection of the sample within that 
population, rather than just a judgment or haphazard choice. In situations 
like (3) and (4), where the treatment is not randomized, probability selection 
of the sample from the population may still be feasible. 

The mean square error of the difference (x-base), between the treatment 
mean and the base chosen as standard for comparison, may be expressed as: 

S 2  

n Mse(x - base) = - + Var(base) + Bias2(x - base). (3.4.1) 

The variance of the base will often be unknown and indefinite, but usually 
it is reliably small compared with the other two terms; otherwise the 
comparison would probably not be made. But if the variance is not 
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negligible, the situation may call for a subjective estimate. The bias of the 
comparison is generally both more important and more difficult to estimate. 
Judgment must be used to choose a standard for control that is “similar” to 
the treatment group, excep for the absence of the predictor treatment 
variable. Often several diverse controls may be used to increase the power of 
“falsifiability” (7.6). Also, the base population(s) may be adjusted for known 
or suspected differences in control variables (4.5). 

The preceding examples illustrate the sorts of situations where this kind of 
comparison seems reasonable. We need good data and reasonable agreement 
about the base(s) used for standard(s) of comparison. Lack of good data and 
confidence in the validity of the base for control makes the “one-shot’’ study 
generally suspect, and altogether despised in methodological literature. Yet it 
is widely used in practice to search for gross differences (x-base) between 
some special groups and reasonably well-known standard bases for them. 

Some defenders of this simple design may claim to see “no clear and 
absolute difference” between the problems of assessing the Bias (x-base) of 
this Design 1 and those of assessing the Bias (x - 6) of Design 3 for controls 
without randomization. But that is a contrary absolutist view to which I do 
not subscribe, in light of the problems of Design 1 compared with those of 
Design 3 (Table 3.4.1). Good controls for Design 3 may be difficult to 
arrange, but for Design I the controls are worse, more difficult, or unavail- 
able in many situations. 

On the other hand, Var(base) may be negligible for Design 1, whereas the 
variance 2 S 2 / n  of Design 3 is double that of S 2 / n  for Design 1.  Furthermore, 
the unit cost factor [ I  + k3]  for Design 3 may also nearly double that of 
Design I .  This latter should have (in 3.4.1) the factor G = ( 1  + base/cn), to 
include the cost of obtaining the data for the base relative to the cost cn of the 
n elements in the x treatment; but this should often be much less than one. 
We should also include in G a factor for the design effects of sampling, 
especially when samples for Design I may come from large clusters. 

We may note two more examples (5 ,6 ) ,  in addition to ( I )  to (4) above, for 
situations when base data are not needed because strong theoretical models 
may provide adequate bases for comparisons. ( 5 )  The recovery rate, within a 
specified period for a new treatment, from a disease that is otherwise known 
to be fatal in the base, needs no control group. (6) The success rate of an 
intensive program to reduce illiteracy can be judged against a practical rate 
of nearly zero for spontaneous rates. For these situations the “external 
validity” problem of representation may be more important than specified 
controls of Design 3, which would merely double the cost, or double the 
variance. Example (1 )  above also may often be in this category. 

The expected value of [.Ex] i n  Table 3.3.1 is E, ,  + M ,  + T, ,  where E,, 
denotes the experimental treatment we desire to measure. M ,  is the mean 
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value of the experimental group before E,, occurs, and ( M ,  - Mbase) 
denotes the bias due to the divergence of the experimental set from the 
standard base used for comparison. (T ,  - Tbase) denotes different effects on 
the two sets due to other events occurring during the period of the 
experiment. Thus ( M ,  - Mbaae) + ( T ,  - Tbdse) denotes the bias of De- 
sign 1 .  Furthermore, the sampling question concerning E,, is especially 
important: To what degree is it conditional on and specific to the treatment 
group, and not representative of potential effects in the target population? 

We should also ask when possible, as in situations such as examples 1 and 
2 above, whether pretreatment observations can be introduced, so that we 
may have Design 2 instead of Design 1. 

3.4B 

Here X and 1 denote the results of measurements made on the same group of 
elements before and after the experimental treatment E. This design consists 
of only module I1  and its mean square error may be written as: 

One-Group Pre/Post Design 2: I X E i ]  

Mse(2 - 
2(1 - R ) S Z  

X )  = (1 + k, )  + ( T  + P, + PE, )2 .  (3.4.2) 
n 

The variance term is modified by the cost factor ( 1  + k z ) .  The basic 
element cost is c for the experimental treatment plus the posttest plus the 
recruitment cost; the pretest adds ck, to the element cost. The total cost for n 
elements is cn( 1 + k 2 ) .  To pay for the pretest for a fixed basic cost of cn we 
should reduce the sample size from n to n/( l  + kz ) .  S2 represents the 
variances for both pretest and posttest observations, and R denotes the 
correlation coefficient between the pairs of observations on the same set of 
elements. As against the variance S2/n of the basic module 1, the variance, 
S2 + S 2  - 2RS2 = 2(1 - R ) S 2 ,  of this design differs by the factor 
2(1 - R)(1 + k2). Usually, 0 < k ,  < 1 and the factor is between 
2(1 - R )  and 4(1 - R ) ;  hence we need between R > 0.5 and R > 0.75 to 
have Var(X - 2) < Var(x). High values of R are not rare when behavior is 
consistent and errors of observation are not high; hence Design 2 may often 
have smaller variance than Design 1 for the same cost. On the other hand, 
low values of R are also common, especially in attitudinal and psychological 
observations, because of the instability of variables and errors in observa- 
tions; then perhaps 2(1 - R)(1  + k, )  > 1 and Design 3 may have higher 
variance than Design 1 .  

In small samples the variance term may predominate. But the bias term 



3.4 FIVE BASIC DESIGNS FOR COMPARISONS 73 

becomes more important in larger samples, and more difficult to guess- 
both before and after the observations. The design has the expectation 
(E,  + T + P, + PE,),v; and the two components PI,  + PE,, arising from 
the pretest can often be supposed to be small compared with the other 
two. Since the same elements were used for both observations, the com- 
ponent for the group means cancels out: ( M ,  - M,) = 0. However, the 
two components El, + Ty may both be large and it may be di5cult to 
disentangle the time effects ry from the treatment effects E,,. If time is short 
and supposed to be without catastrophic events, we may consider T, to be 
small compared with Elx. Without such assurances one may resort to 
Design 3 or to Design 4, both with controls of Tb for time effects in the 
comparisons. However, these two designs, especially Design 4, increase 
variances and costs also. 

Therefore one may try to obtain control of time effects for T from some 
standard base, as for Design 1, if these data are available. Furthermore, the 
question of representation may also become important and the subscripts x 
are used to call attention to it. If the group is not selected with probability 
sampling from the target population, inference from El, and T, to the 
effect of T in the population becomes subject to judgment about their 
representativeness. 

An interesting extension concerns possible situations where the posttest is 
only a sample of the pretest (or vice versa). Let nl and n, denote respectively 
the larger and smaller samples; then the variance of the comparison [Kish 
1965a, 12.41 is: 

Var(3i. - X )  = S* - + ___ [jS 
When R > 0.5, the second term is negative and decreases the variance; the 

excess (n! - n,y) cases would actually reduce that decrease by increasing the de- 
nominator from n,y to n/. Therefore, it is better to retain only the common 
portion n,y with the variance 2(1 - R)S*/n , ,  and discard the surplus 
(nr - n,J observations, though this may seem counterintuitive. But there are 
estimators other than (2 - X )  that can utilize excess observations in both 
pretest and posttest. 

The preceding amounts to two new designs: either [XE5] ,  + [BO.], -, or 
[XE.?],y + [.Ob]l-,y. Another possibility would be [.Ex] + [BO.],  with the 
pre- and postobservations made on “similar” but separate samples; the 
correlation R would be absent from this design for two separated samples. 
These are illustrations of the possible extensions of the basic methodological 
approach to which the symbols may be extended and modules constructed. 
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3.4C 

When people begin to think of experiments, they first imagine something like 
this design, which combines module I plus 111: an experimental group, 
exposed to treatment E, yields results x, whereas a control group, exposed to 
a control treatment, or to “nothing,” yields results b. The virtues of this 
design depend greatly on whether or not the treatment and control groups 
were randomized or how well randomization was approximated. Internal 
validity demands that both samples be representative of the same population. 
External validity requires that both samples be representative of the same 
target population. Randomizations in two senses are the keys to achieving 
each kind of validity (1.4). Randomized separation of treatment and control 
groups is a critical distinction, which separates “true” (“ideal”) experiments 
from other investigations (“quasi-experiments”). Campbell [ 1957, 19631 
denotes this distinction with separate names: ( I )  posttest onfy control versus 
( 2 )  static-group comparison. Here we shall distinguish randomized Design 3 
with the symbols [.Ex] + [.arc]. 

Control Group Comparison Design 3 I.Exl + [.Obi 

The expected difference in Design 3 is 

Thus the mean square error of Design 3 may be denoted with 

2 s z  
n 

MSE(x - b )  = - [ 1  + k , ]  + [ (M,  - M b )  + (T,x - Th)Iz. (3.4.3) 

For the variance term here we assumed two independent simple random 
samples of n from populations with element variances S 2 .  The cost for the 
two samples of size n is cn + ck,n = cn(l + k,).  The element cost ck, for 
the control may be somewhat less than for the experimental group: then 
0 < k ,  < 1. For a comparable fixed cost cn, the sample size n must be 
reduced by the factor 2(1 + k,); then the variance of Design 3 is 2(1 + k 3 )  
times greater than for the basic Design 1. For Design 2 over Design 3 the 
variances are in the ratio (1 - R)(1 + kz)/(l + k,).  This can be much less 
than 1, especially when R is large and k ,  < k , .  Then Design 2 should be 
preferred over Design 3 on these considerations of variance alone. 

The variance of Design 3 may be reduced somewhat by avoiding 
complete independence of the two samples with some type of “matching” 
of the two samples. If we denote the element variance reduced with 
matching as ( 1  - r , )S2 ,  the ratio of Design 2 over Design 3 becomes 
( 1  - R)(I + k2) / (1  - r3)(l  + k,) ,  likely still less than 1 and still in favor 
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of Design 2. Usually the gains in the variance are smaller than hoped for; but 
matching may also reduce the bias of nonrandomized selections and that 
may be more important. 

The bias of Design 3, ( M ,  - M b )  + (T,  - Th), may often be consider- 
ably greater than the bias T, + P, + PE, in Design 2. The effects of pretests 
may be negligible; and T, as well as (T,  - Tb) may be unimportant, though 
here the advantage may be with Design 3. However, efforts to obtain good 
controls to reduce ( M ,  - M b )  with confidence may be very difficult. 

In “ideal” experiments we would have ( M ,  - Mb) = 0 and 
(T,y - T,) = 0: Complete randomization should give us the same expec- 
tations for both treatment and control groups in Design 3. Only selection 
biases may remain in E,, to the degree that the groups were not representa- 
tive, because not randomized over the target population. However, we must 
remember that for a randomized experiment it is difficult to achieve 
probability sampling. 

If we would disregard the problem of external validity, randomized 
Design 3 seems preferable to Design 2, which has bias T,, plus conceivably 
P, + PE,. We may see that preference expressed for this design by Campbell 
[1957, 19631, Ross and Smith 119681, and Namboodiri 119701. But this 
reduced bias should be balanced against the reduction in the variance by 
(1 - R)( 1 + k2)/(l + k3)  for Design 2. Furthermore, probability sampling 
may be easier to achieve for Design 2 than for Design 3. 

In practice, improved controls, preferably randomization, face two 
obstacles in social research-and in many other kinds as well. Cost is one. 
The other is the dilemma between the goal of reducing the bias, especially 
( M ,  - M b )  for better internal validity, and the goal of greater external 
validity by spreading the sample over the target population, preferably with 
randomization. I do not accept the claims of clear and universal priority for 
internal versus external validity (3.5). 

In the face of these conflicts perhaps we can introduce a combination of 
two studies. First, a study with Design 2, preferably randomized over the 
population; then another study with Design 3, perhaps on a smaller scale. 
But this must be compared with the costs and expected results of Design 4. 

3.4D Pre/Post Control Group Design 4: IXEil + lB06l 

This more elaborate design, combining moduls I1 and IV, has been intro- 
duced to overcome both kinds of biases present in Designs 2 and 3. “For 
these reasons, the Pretest-Post-test Control Group Design has been the ideal 
in the social sciences for some thirty years” [Campbell, 19571. Like other 
ideals, I suspect it is more widely urged in the literature than actually 
practiced in the field. Like other ideals, it also demands sacrifices: Variances 
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and costs are both subject to increases by factors of about 2 to 4, hence the 
unit variance x cost factor increases by about 4 to 16-unless R is large and 
k ,  + k ,  is small. 

The mean square error of Design 4 may be denoted with 

S2 

n 
Mse [(a - X )  - (6 - B)1 = 4(1 - R)-[I + k ,  + k3 + k4] 

+ [(T, - Tb) + (PI, - P/d + PE/Xl2. 
(3.4.4) 

We assumed independence between the two modules and simple random 
samples of n from the population, with element variances of S2 for both. The 
cost of the design is cn(1 + k ,  + k ,  + k4) .  When this is equated to the cost 
fixed at cn for the basic design 1, we see that n, = n/(l + k ,  + k ,  + k4) ,  
and the variance is correspondingly increased. Often k ,  < I ,  and 
k ,  = k ,  < I ,  perhaps close to zero. The variance is increased over Design 1 
by some factor between 4( I - R) and 16( 1 - R ) ,  and perhaps 8( 1 - R )  
may be closer than either extreme; and the increase depends on how high R 
is. 

The variance for Design 4 has the factor 2(1 + k ,  + k ,  + k4)/(l + k , )  
over Design 2. Thus one may be paying with a variance about four 
times greater for differencing the sources of bias (T ,  + P,) in Design 2. 
Compared to Design 3 the variance of Design 4 has the factor 
2(1 - R)( l  + k ,  + k ,  + k4)/(l + k,); if ( k ,  + k 4 )  and (1 - R )  are 
small, the variance for Design 4 may be less than for Design 3. Lastly, both 
of these ratios may be affected by reductions of the element variances 
induced with matched sampling; its effect on S’ in Design 3 may not be 
negligible. 

We are most interested in the bias term of Design 4, (in 3.4.4). This 
comes from the expected difference 

Exp[(t - X )  - (6 - B ) ]  = ( E ,  + T + P, + PE,), - ( T  + P,)b 

= ELX + [(TI - T b )  + - Prh) + P E ~ ~ x l .  

In  the “ideal” experiment, symbolized with [XEZ]  + [Cart], randomi- 
zation should remove (T,  - Tb)  and ( P I ,  - P,b), and should leave only 
PE,, as (negligible) bias in  Design 4. Thus the bias terms T, and P,, are 
removed by the addition of module IV in Design 4 to the module I1  of 
Design 2. However, Design 3 does not even have the marginal bias term 
P E , , ,  from interactions of the pretest P with E and T. This consideration, 
confined to randomized experiments, and the simple counting of five 
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components of the bias term have made Design 4 disliked and Design 3 
prefered by some writers [Ross and Smith 1968, Namboodiri 19701. But I do 
not subscribe to that view, and consider that bias components and designs 
should be judged in the context of specific situations, and PE,, usually 
disregarded. 

We should be most interested in comparing bias terms for non- 
randomized designs. Here Design 4 has the second-order terms (T ,  - Th) 
(P,-y - Plh)  against the first-order terms T, + P,,  of Design 2. The decrease 
in potential bias may compensate for the increase in variance in Design 4. 
The bias in Design 3 is (M,T - Mh) + (T,  - T h ) ;  and ( M ,  - Mb)  may be 
considerably more risky than (P,,  - P,h) + PE,, from the pretest effects in 
Design 4. Thus when there are grave doubts about lack of randomization, 
Design 4 may have considerable advantages over both Designs 2 and 3. 

3.4E The Four-Group Design 5: I X E i ]  + [B&] + [ .Ex]  + [.Ob] 

Design 5 uses all four modules: it adds the pair I and I11 for Design 3 to the 
pair I1  and IV of Design 4. “This Solomon Four-Group Design enables one 
both to control and measure both the main and interaction effects of testing 
and the main effects of a composite of maturation and history. It has become 
the new ideal for social scientists” [Campbell 19571. The design aims at 
separating and measuring the effects of testing, present in Design 4 but 
absent in Design 3, from other effects due to time’s passage. It may be 
adapted when the effects of testing are suspected of becoming potentially 
important. I t  gets strong support [Campbell 1957; Campbell and Stanley 
1963; Ross and Smith 19681 for its emphasis on validity and on cautions 
against possible biases from the effects of pretests. 

The design originated in the literature for educational experiments; there, 
the effects P of pretesting may sometimes conceivably become large enough 
to be considered, as compared with experimental results E or other sources of 
bias. There also, the randomization of the four modules may be feasible. But 
it is seldom used in actual research because of its high cost, its high variance, 
and its complexity, and because testing effects are seldom that important 
compared with other possible sources of bias and errors. This is another 
“ideal” out-of-work. 

Furthermore: “There is no singular statistical procedure which makes use 
of all six sets of observations simultaneously. The asymmetrics of the design 
rule out the analysis of variance of gain scores” [Campbell and Stanley 19631. 
Moreover, following the fashion of the times, discussions of statistical 
procedures are confined to testing of null hypotheses of zero differences. 
One procedure [Campbell and Stanley 19631 calls for testing separately 
the modules [XET] - [BOg] = [(T - X )  - (h” - B)] ,  which has, as in 
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Design 4, expectation E, 4- PE,,  with (T,  - Tb) = 0 and (P,, - Plb) = 0 
in randomized experiments. Then from the posttest, measurements of all four 
modules [(a - x)  - (6 - h ) ]  may be computed, from which in randomized 
experiments PE, may be obtained to “measure both the main and interaction 
effects of testing . . .,” the chief aim of this design. That aim is not often 
foremost in research, particularly in nonrandomized quasi-experiments, 
when other sources of bias seem more important. Different comparisons 
yield diverse components, and, unfortunately, there appears to be no 
uniformly best way to test for them and to utilize the results of this design. 

Perhaps Design 5 should be viewed as an effort to use Designs 4 and 3 in 
combination, when neither seems clearly the best. As a compromise between 
the two designs, we may take both, though not necessarily in equal 
proportions, especially if the bias threats and the costs of the two designs 
differ greatly. The comparisons for the two designs may be contrasted, 
searched for clues, and, with luck, courage, and caution, combined into a 
joint result. 

Different combinations may also be suggested, such as Designs 2 and 3 
when neither is clearly better. Still others may also be tried, given the 
flexibility of the modular method. At the end of 3.4B we also noted some 
possible modifications of Design 2, also built from the modules. In 3.4A the 
possible uses of standard bases was introduced. In 3.6 we shall note 
extensions of the observations over several and longer time periods. The 
approach, the tools, and the method can be usefully adapted to other uses. 

3.5 CLASSIFICATION FOR 22 SOURCES OF BIAS 

A complete, theoretically sound, logical taxonomy of all biases, good for all 
specific situations in any field of research cannot be achieved. The list in 
Table 3.5.1 of 22 sources of bias is aimed at providing reminders, thus 
helping the researchers themselves find and describe their actual sources of 
potential biases in specific situations. These sources thus serve as bridges 
from the major types of errors, which distinguish research designs, to the 
many specific variations that may occur in actual situations. These 22 sources 
at level 111 (3.3B) bridge the gap between the four types at abstract level I1 
and the specific biases of levels IV and V, which are too numerous to name 
and describe. With this two-level framwork I hope to introduce compre- 
hensibility into what otherwise would appear a chaotic mess of too many 
different sorts of biases. Most of us can grasp four or six concepts at  one time, 
but 22 seems too many. 

Thcse 22 sources denote a personal attempt at classification, with 
arbitrary names and descriptions. Readers may change them, name them, 
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TABLE 3.5.1. Classification for 22 Sources of Bias in Six Major Types“ 

T 
TI 
T 2  
T 3  
T4 

M 
M I  
M 2  
M3 
M 4  

P 
PI 
P2 
P3 

E 
El 
E 2  
E3 

R 
R1 
R2  
R 3  
R 4  

U 
u1 
u2 
u3 
u4 

Time effects 
History [I] of external events, common, unique, unforeseen 
Maturation [2] of subjects, internal, individual, gradual, aging, tiring, learning 
Instrumentation [4]: changes in measurements, standards, observers 
Treatment changes over time in panel studies 

Selection of treatment members 
Differential selection [6] of members for groups 
Differential loss [7]:  due to mortality, nonresponse, migration 
Selection-maturation interaction [8] 
Regression effects [5] from selection of extremes for comparisons 

Pretesting 
Pretest effects [3]: denoted by P in text 
Pretest-experimental interaction 191: denoted by P E  and PET 
Pretest-time interaction: denoted by PT 

E.uperimenta1 treatments: predictor variables 
Artificiality of experimental treatments [ 1 11 and environment 
Multitreatment interference [ 121 
Errors in measuring treatments [4] 

Errors in measured responses: predictand variables 
Artificial responses [ 1 11 instead of realism 
Timing of posttests 
Neglected responses: side effects, harmful or beneficial 
Differences in posttest measures between treatment groups [4] 

Representation of target population (universe) 
Divergence of coverage [ l o ]  from frame to target population 
Losses due to mortality, nonresponse, migration 
Change of target population over time 
Environmental limitations 

“Numbers in brackets refer to “12 threats to validity” in Campbell [1957, 1963) 

and construct their own. However, some consistency is desirable, and  I 
followed the best-known list of “12 factors jeopardizing the validity of 
various experimental designs” [Campbell and Stanley 19631, based on  an 
earlier effort [Campbell 19571. Those 12 factors are shown with their numbers 
in brackets in Table 3.5.1 and are described a t  the end of this section. The 
other 10 represent additions that I felt were needed. The division into six 
major types is mine, including the four used in Section 3.3 plus two new ones. 

The effects of time’s passage, type T, can have many forms and  I divided 
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them into four sources. Source TI refers to sources that are external to the 
subjects and that also may have common effects on all subjects and in both 
(or all) treatment groups. Source T 2  refers to changes internal to the subjects, 
which may be as diverse as learning or tiring or merely aging. This internal 
source T2 is more likely to be gradual, whereas the external effects TI may be 
sudden, unforeseen, and unique. But these features may be reversed and I list 
them only to alert readers and researchers to them. Type T 3  refers to changes 
in measuremenls that may be introduced deliberately, but more often just 
creep in despite attempts to keep standards stable and unchanged. Type IV, 
on the other hand, refers to changes in the treatments themselves: changes 
that may occur in repeated treatments, even when unintended. Furthermore, 
there may be interactions among these four sources. For example, the 
“same” treatment may appear different in changed external circumstances or 
to tired, aged, or more learned subjects. 

All events take place in “the river of time’s Aow,” and some treatments 
may need considerable spans of time, which may also permit many other 
extraneous effects to develop. Furthermore, the effects of time can produce 
interactions with other sources of bias; some of these interactions appear 
below as separate sources of bias. For example, the bias M 3  of 
selection-maturation interaction [8] refers to the possibility that learning or 
tiring may be greater (or less) in the treatment group than in the control 
group. Losses from samples, M 2 ,  may also be different in the two groups. 
These differences can have biasing effects on the means when they are 
selective in the response variable. 

Type M biases are due to differences in the selection of individuals 
between the treatment and the control groups; in general, between the several 
treatment groups. Differential selection M 1 occurs before treatments begin; 
this poses the gravest problems for nonrandomized observational studies, in 
contrast to the equality introduced by randomization in true experiments. On 
the other hand, differential loss M 2  is a potential bias that can occur in both 
kinds of designs, when differences in treatments result in differential out- 
selection due to nonresponse, migration, or mortality. Selection-maturation 
interaction M 3  may occur in nonrandomized observational studies when 
maturation (learning, tiring) occurs at different rates in the groups that were 
“matched” artificially at the beginning of the study. “Regression effects” M4 
may occur when groups have been selected on the basis of extreme scores, 
and those scores hide random components that are subject to “regression 
toward the mean” on remeasurement regardless of treatment. This serves as 
an example when disturbing factors ( I  .2) from a nonrandomized selection 
process contribute to a potential bias that is confounded with the ex- 
planatory factors. Confusing selection procedures with the explanatory 
factors is the common feature of these diverse sources of bias within this 
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major type M ;  they all interfere with the “internal validity” of non- 
randomized studies. 

Potential bias sources of type P may arise from pretesting observations 
before the treatment, as in modules I1 and IV, but not in I and 111. However, 
pretest observations can often reduce variances drastically and for relatively 
low cost (3.3). Thus we may face a conflict if considerable effects seem 
possible from the pretest observations P I and from their interactions with 
other sources of bias. Here we distinguish the major pretest effects P I ,  
denoted as P in Section 3.3, the pretest-experimental interactions, denoted 
there by PE and PET; and the pretest-time interactions, denoted by PT. 
Here we follow the literature of biases with this elaborate structure 
[Campbell 1957; Campbell and Stanley 1963; Ross and Smith 1968; Nam- 
boodiri 19701. However, I expect that in most situations these sources will 
tend to be negligible compared with other considerable sources of bias and 
variance. In cases where fear of considerable P effects seem reasonable 
I suggest an innovation (untried to my knowledge): Make the pretest as 
innocuous as possible so long as that minimal pretest can yield the desired 
baseline for the correlations R with the posttests, because this is its main or 
only function. 

Experimental treatments may have unplanned, and even unexpected, side 
effects. This may be true for predictor variables in general, whether they are 
considered as treatments, or stimuli, or causal variables. The artificiality of 
experimental treatments E 1 and of their environmental setting poses vast 
problems, for which we can offer no general advice that would also be helpful 
in specific settings. It is worthwhile to call attention to E2 [12] “multiple- 
treatment interference, likely to occur whenever multiple treatments are 
applied to the same respondents, because the effects of prior treatments are 
not usually erasable.” Errors in measuring instruments E3 or “instrumenta- 
tion” [4] is included for a general caution, because there are many examples 
of unexpected changes in responses from unintended, slight changes in 
meaning, in questionnaires, in perceptions, and generally in stimuli. These 
cautions overlap with others such as M 3  and T3.  In general, changes of types 
E and T cannot be distinguished, and we proposed (in 3.3B) to consider 
E, = E + ETjointly. 

As with predictors, potential instrumental biases exist when measuring in 
posttests the response variables R, i.e., the predictand, criteria, outcome, 
effect variables. Artificial responses, R 1, encompass in two words probably 
the most daunting problems facing all “invasive” research-and in experi- 
ments often probably even more than in controlled observations. The 
criterion of realism in measuring effects is probably a principal reason for the 
frequent use of observational studies instead of experiments in social and 
medical research. We must admit that with this type of bias we are beyond 
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the narrow confines of statistical design and are mostly within the substantive 
domains of specific disciplines. However, the lines of responsibility should 
not and cannot be drawn sharply, and statistical design and “concept 
validity” must interact in practice. Indeed, this book began ( I .  1) with 
this obstacle to true experiments, which-in addition to cost factors 
and ethical considerations-lead so often to the use of controlled 
observations. 

Two kinds of biases in response measurements merit special attention. 
First, the timing of the posttests, R2, often has drastic effects on measures of 
the consequences of treatments. Short-term success rates may not only be 
quantitatively different from long-term rates; they may also be qualitatively 
different in direction. This problem receives separate and longer attention 
later (3 .6) .  Second, neglected responses R 3  introduce related and even 
broader questions; they are substantive questions but they have been also 
thrown at  (the feet or heads of) statisticians: What good is measuring 
precisely and validly one specified effect and letting other, perhaps more 
important, effects go unmeasured and neglected? Furthermore, it is true that 
statistical multivariate analysis often uses multivariate predictors and only a 
single predictand (dependent) variable. From the practical side of medical 
and social research we also hear of research results for main effects, which 
neglect “side effects.” (See Figure 3.6.2B) Furthermore, with the label “side 
effects” people usually refer only to harmful effects, neglecting possible 
beneficial side effects. The history of contraceptive pills provides one example 
where harmful side effects may well be outweighed by beneficial side effects 
[Weller and Bouvier 1981, Ch. 61, in terms of not only medical health but 
also great social benefits on a world scale. 

Differences between treatment and control groups in actual posttest 
measures R4 are well known in the field of clinical trials. “Double-blind 
clinical trials” are prescribed as standard protection against unintended 
biases in diagnoses, usually in favor of new medicines, new treatments, and 
new operations [Gilbert, Light, and Mosteller 1975; Kahn 1972; Meier 19721. 
This is an old problem in fields of medicine; and we suspect that it is no less 
important in social research, where there is as much room for false optimism 
and perhaps even more scope for self-delusion (both for subjects and for 
researchers) than in the effects of pills, vaccines, and operations. I guess that 
the only reason for fewer instances (if any?) of “double-blind” trials in social 
research is that the nature of social treatments is much more difficult (or 
impossible?) to hide from subjects and from researchers than the identity of 
pills and iniections. 

Problems of representation ( U )  are commonly ignored in the literature of 
both experimental design and controlled observations; sometimes they are 
even denied. However, we can be brief here, because they were treated 
extensively in Sections 1.7, 2.7 and 3.1. Divergence of coverage [ 101 from the 
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frame of selection to the target population U 1 has been noted in the context 
of representation (2.1). But after selection, further divergence also occurs, 
often wide, because of losses from nonresponses, migration, and mortality 
U 2 ,  particularly in panel studies. Both U1 and U 2  biases occur in the sample, 
but U 3  points to changes in the target population. Following a “moving- 
target” population over a time span raises questions of inference to 
populations beyond the target population (2. I ,  6.3). This also applies to 
environmental limitations U4, which confine any population the researcher is 
able to cover in the target population. 

Readers can profit here from a direct look at the source and the list on 
which mine was based [Campbell and  Stanley 19631. 

Fundamental to this listing is a distinction between internal validity and 
external validity. Internal validity is the basic minimum without which any 
experiment is uninterpretable: Did in fact the experimental treatments make a 
ditference in this specific experimental instance? External validity asks the 
question of generalizability: To what populations, settings, treatment variables, 
and measurement variables can this effect be generalized? Both types of criteria 
are obviously important, even though they are frequently at odds in that 
features increasing one may jeopardize the other. While internal validity is the 
sine qua non, and while the question of external validity, like the question of 
inductive inference, is never completely answerable, the selection of designs 
strong in both types of validity is obviously our ideal. 

Relevant to internal validity, eight different classes of extraneous variables 
will be presented; these variables, if not controlled in the experimental design, 
might produce effects confounded with the effect of the experimental stimulus. 
They represent the effects of: 

1 .  History, the specific events occurring between the first and second 
measurement in addition to the experimental variable. 

2.  Maturation, processes within the respondents operating as a function 
of the passage of time per se (not specific to the particular events), 
including growing older, growing hungrier, growing more tired, and the 
like. 

3. Testing, the effects of taking a test upon the scores of a second testing. 
4. Instrumentation, in which changes in the calibration of a measuring 

instrument or changes in the observers or scorers used may produce 
changes in the obtained measurements. 

5 .  Statistical regression, operating where groups have been selected on the 
basis of their extreme scores. 

6. Biases resulting in differential selection of respondents for the com- 
parison groups. 

7. Experimental mortality, or differential loss of respondents from the 
comparison groups. 
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8. Selection~~maturation interaction, etc., which in certain of the multiple- 
group quasi-experimental designs, is confounded with, i.e., might be 
mistaken for, the effect of the experimental variable. 

The factors jeopardizing external validity or representativeness which will be 
discussed are: 

9. The reactive or interaction effect of testing, in which a pretest might 
increase or decrease the respondent’s sensitivity or  responsiveness to the 
experimental variable and thus make the results obtained for a pretested 
population unrepresentative of the effects of the experimental variable 
for the unpretested universe from which the experimental respondents 
were selected. 

10. The interaction efects of selection biases and the experimental variable, 
1 I .  Reactive effects of experimental arrangements, which would preclude 

generalization about thc effect of the experimental variable upon 
persons being exposed to it in nonexperimental settings. 

12. Multiple-treatment mterfirence, likely to occur whenever multiple treat- 
ments are applied to the same respondents, because the effects of prior 
treatments are not usually erasable. 

A modified a n d  longer list a n d  its source [Cook a n d  Campbel l  19761 a r e  
also wor th  studying. T h e  list is placed in a s t ructure  of 

four kinds of validity. Statistical conclusion validity refers to the validity of 
conclusions we draw on the basis of statistical evidence about whether a 
presumed cause and effect co-vary; internal validity refers to the validity of any 
conclusions we draw about whether a demonstrated statistical relationship 
implies cause; construct validity refers to the validity with which cause the effect 
operations are labeled in theory-relevant or  generalizable terms; and external 
validity refers to the validity with which a causal relationship can be 
generalized across persons, settings, and times. 

Both sources [also Campbel l  19571 give good expositions o f  “ threats  t o  
validity” linked to specific basic designs, together with many empirical 
examples and long lists of references. 

3.6 TIME CURVES OF RESPONSES 

We shall conceive of the causal relation in the only way in which we are able to 
make sense of it: operationally. In other words, the relation between cause and 
effect is regarded like the relation between turning the steering wheel in a car 
and the turning of the wheels themselves. . . . 

By means of experiment one hopes to find relations between independent 
and dependent variables, and these relations are then often referred to 
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TABLE 3.6.1. Live Births per 1000 Inhabitants, Romania, 1960, 1965-70” 

Quarters 1960 1965 1966 1967 1968 1969 1970 

I 
I1 
111 
IV 

20.0 15.3 14.7 15.9 29.6 25.1 21.5 
19.9 15.6 15.0 22.8 27.0 23.9 22.7 
19.5 14.7 14.4 39.1 26.6 24.0 21.2 
17.4 13.1 13.3 31.7 24.0 20.6 19.2 

Annual rate 19.1 14.6 14.3 27.4 26.7 23.3 21.1 

“From Teitelbaum. 1972 

as causal under the following four conditions: ( I )  that they are immediate, 
i.e., that there is no appreciable time-lag between changes on the 
independent and the dependent sides, (2) that they are deterministic, . . . 
(3) monotone, . . . (4) invariant. . . . [Galtung 19751 

In statistical design for social research we should plan for typical 
situations that have none of the above characteristics. Specifically, in this 
section we discuss designs for dealing with “appreciable time-lags,” because 
we must measure effects that are far from “immediate” after the application 
of treatments. Diverse lags and successive changes of effects occur common- 
ly, not only in social research but also in the medical and biological sciences. 
Even chemical reactions take time and even the speed of light is finite, but 
they are not our present concern. Here we discuss the timing of the 
posttreatment observations for the modules and designs of 3.3 and 3.4. 

We may begin with an instructive and colorful example: the fertility 
effects in Romania, after legal abortions were dramatically curtailed on 
1 November 1966, are shown in Table 3.6.1 and Figure 3.6.2a [Teitelbaum 
19721. We note a sharp rise, almost a tripling, of the birthrates after the 
natural gap of nine months for the population surprised by the new law. But 
in three years the population responded gradually with illegal abortions and 
with birthrates that erased two-thirds of the sudden rise. There is a lesson in 
that curve for those who would abolish legal abortion without reckoning on 
illegal abortions, which have been universally practiced where legal abortions 
are unavailable. Furthermore, Berelson [ I9791 showed that for 10 years 
(Figure 3.6.2b) Romania did get higher birthrates and higher total popu- 
lation, as intended, with their decreased legal abortions; although they did 
keep on rising slowly through the decade. But note also the dramatic rise in 
abortion-related deaths (due to illegal abortions); these side-effects were 
unplanned, but they should not have been totally unanticipated. In the 
longer range the “treatment” was even less effective: The crude birthrate 
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Figure 3.6.2a. Live births per thousand inhabitants: Romania, 1964-70 [Teitlebaum 19721. 
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Figure 3.6.2b. Romania's 1966 anti-abortion decree: the demographic experience of the first 
decade [Berelson 19791. 
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(births per 1000 inhabitants) hovered between 18 and 20 during 1971 to 1976, 
but fell to 15.2 by 1982, 16 years after the abortion law of 1966. 

Another interesting example arose when Sweden changed in 1967 from 
driving on the left side of roads and streets to the right side. Most of us feared 
an initial increase in traffic accidents until the confused Swedes adjusted to 
their new rules; and thus we were surprised by a sharp drop instead in the first 
month. However, this was not a permanent benefit for changing to  a 
naturally better side of the road, but merely the unanticipated excess benefit 
of caution over habit. As the new habit overcame caution within a few 
months, traffic accidents rose back to their previous levels. 

The Hawthorne effect is famous in social psychology, though its exact 
cause is still controversial [Kahn 19751. 

When Rothleisberger and Dickson (1939) carried out their experiments to 
find conditions that would maximize productivity of factory teams at the 
Hawthorne Works of Western Electric, they found that every change-- 
increasing lighting or reducing it, increasing the wage scale or reducing 
it-seemed to increase the group productivity. Paying attention to people, 
which occurs in placing them in an experiment, changes their behavior. 
This rather unpredictable change is called the Hawthorne effect. [Mosteller 19671 

Here we note only that such effects are bound to be temporal and longer 
measurements are needed to separate shorter from longer effects. For 
example, we doubt that changing the driving lanes in Sweden every few 
months would keep on lowering the accident rates. 

Many less dramatic examples testify to the pervasiveness of problems to 
which single measurements before and after treatments fail to yield satis- 
fqctory solutions. 

The essence of the time-series design is the presence of a periodic measurement 
process on some group or individual and the introduction of an experimental 
change into this time series of measurements, the results of which are indicated 
by a discontinuity in the measurements recorded in the time series. [Campbell 
and Stanley 1963, Section 7; see also Campbell 1969; Cook and Campbell 1979, 
Ch. 51 

The series of observations may be represented by 0, 0, 0, 0, 0, 0, . . . 
etc., and where to introduce the treatment X into this series is a prime 
problem for design. The symbols Xfor treatments and 0 for observations are 
consistent with the cited literature, though not with the symbols of (3.3), 
where they are E or 0 for treatments and x or  h for observations. We omit 
the problems of analysis to separate measured effects from other possible 
causes of change and both from “background noise.” (See Figure 3.6.3) 
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X 
I 

Figure 3.6.3. Some possible outcome patterns from the introduction of an experimental variable 
at point X into a time series of measurements, 0,-0,. Except for D, the 0,-0, gain is the same 
for all time series, while the legitimacy of inferring an erect varies widely, being strongest in A 
and B, and totally unjustified in F, G, and H [Campbell and Stanley 19631. 

In addition to offering general cautions about the diversity of possible 
outcomes, I introduce an oversimplified skeletal scheme as a framework for 
that diversity (Figure 3.6.4). Time of treatment is represented by X followed 
by a gap W for waiting times of undefined duration, which can also be 
compressed or expanded like an accordion. 

In column 1 we see representations of the four basic types. Type A with 
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no effect is contrasted with type B with a sharp one-time additive effect. This 
would be the simplest contrast for two treatments, A and B. Type C shows a 
gradual effect, and type D has both additive and gradual effects in the same 
direction. However, in E the sharp rise is countered by a gradual change in 
the opposite direction, back toward the original position. Remember that 
Romanian abortions and Swedish motor accidents were of this type, which 
may be fairly common. 

For each of the types A to E I sketch subtypes for varieties. For A the null 
effect may take any form denoting no change. In A 2  and A 3  we see 
undisturbed linear increase or decrease, whereas in A 4  and A 5  the lack of 
effect occurs in different curves. 

A sudden increase of levels ( B )  may be induced not only in a flat level (Bl) 
but also in a steady increase (B2) .  The change may involve a drop in levels 
( 8 3 )  or a postponed rise (B4);  also a rise in a complex (growth) curve (B5). 

For type C we note that a change of slope may heighten existing increases 
(C2), but it may also result in decreases of slope (C3 and C4) .  It may also 
flatten existing increases (C5); for example, a successful program ( X )  of birth 
(or crime) control may stabilize a growing population (or crime rate). 
Finding actual examples would not be difficult for any of these models. 
All these models depend on scales of measurement and are subject to 
transformations of those scales. For example, an induced change of 
population totals like C1 would resemble B1 if measured in growth rates. 
Similarly, population totals like A 2  would resemble A 1 in growth rates. 

Changes in both level and slope denote increases in D 1 and decreases in 
0 2 .  The changes of level are represented by steep slopes (early in 0 3  and 
later in 0 4 ) ,  which may be difficult to distinguish in practice from sharp rises 
of level. In D5 downward slide (of profits, or achievement tests) is halted and 
then stabilized (at a higher level perhaps). 

I suspect (or fear) that types E represent many common situations, where 
early apparent successes of treatment ( X )  are followed by backsliding toward 
the original levels (E4 and ES), as in the earlier examples from Romania and 
Sweden, or perhaps even beyond them. 

Five crude simplifications were introduced for brevity. First, smooth 
curves replace the fluctuations we are bound to find, as hinted at  in A 5 .  
Second, under those fluctuations we should expect to find curves and smooth 
transitions, rather than the discontinuities of sharp angles for straight lines. 
Third, we ignore how far these lines may extend; for example in El, would 
the descent flatten out before reaching the origin at  X or plunge below it, or 
return to it? And so on, to doubts about the destination of the other lines. 
Fourth, the figures show only simple additive jumps or changes in the slope 
of linear changes; instead, the main interest may be in acceleration or 
deceleration, i.e., in changes in the rates of change. For example, can 
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inflation (change of prices) or population growth be slowed down? And so 
on, to higher orders of change. Fifth, we discuss the effects of treatments at  a 
single point of time, whereas repeated or continuing treatments may have 
different and complex patterns of response. 

A complicated and dramatic example of reversals of subtypes E5 concerns 
a treatment for Parkinsonism and for encephalitis lethargica (sleeping 
sickness), “L-DOPA is a . . . true miracle drug of our age” was said and 
believed for a while after its first uses in 1967. Years later its results still 
appeared very beneficial for most patients-but only for about six months. 
Then its benefits begin to wear off and side effects set in. Evaluation becomes 
complicated: the losses of benefits vary both over patients and over time; side 
effects also vary among patients and over time; prognosis is difficult both 
for benefits and for harmful side effects; overall evaluation must include 
prognoses for all those factors [Sacks 19731. 

We must recognize that in many or most situations, we cannot obtain 
many and prolonged measurements; we must rely on models and other 
indicators of changes of effects. For example, in many cases if a single 
treatment X shows zero effects after a short but proper interval, one may 
assume the zero effect will continue into the future from that treatment. All 
the effects over time shown in Figure 3.6.4 are possible, but we hope that in 
most situations the decision lies chiefly between A 1 and BI, or A 2  and B2. 
Of course, other causes, as well as repeated treatments, may produce future 
effects. However, the combination of several treatments is too broad a 
subject for our brief discussion here. 

The importance of taking into account seasonal factors in measurements 
is shown in 

the data of Marshall and Swan [I9711 . . . of average growth in height for two 
“cohorts” aged exactly 7.0 and 7.5 years at the beginning of the year. Over the 
one year period it is assumed that they both increase by 6.0 cm so that there has 
been no secular trend operating over the half year separating the cohorts. We 
also see that the fastest rate of growth is in the spring. Thus an estimate of 
average growth rate based on a period of less than a whole year will give a 
biased estimate. For example, using either cohort, if we estimate a growth rate 
based on the six-month period from January to July, we obtain a value of 
7.2 cm per year, which is 20% too large. Likewise, if we base an estimate on the 
difference between the older cohort in April and the younger in July we obtain a 
value of 5.4 cm per year, which is 1 1  % too small. [Goldstein 19791 

Not only seasonal but even diurnal variation may affect many bodily 
measurements. Several investigators have shown that measures of heights 
average about a half inch more in the morning, after sleeping flat, than in the 
evening after the compression of the spine due to the upright stance during 



92 3. DESIGNS FOR COMPARISONS 

the day. Substantive knowledge of any field is needed for planning the 
statistical design of studies okzr time. This brief section can do no more than 
call attention to this problem; and not only contradict the first quotation on 
instantaneous effects but also caution against complete reliance on single 
differences between pretests and posttests. 

3.7 EVALUATION RESEARCH 

Defining, describing, delimiting evaluation research (ER) to distinguish it 
from social research and research in general-yet covering its various special 
aspects for specific situations-poses a challenge. Also, because ER is a 
relatively new field, readers will come to it with very different backgrounds. 
Though earlier activities existed, 1955 may mark ER’s formal birthday (in 
the International Social Science Bulletin 1955). In 1967 one could find some 
specific reports and a few manuals but no textbooks [Wright 19671. By 
1985 it had become a growth industry, with textbooks, courses, a journal, 
Evaluation, and an Evaluation Research Society. 

Two trends stand out in the modern attitude toward evaluation. First, 
evaluation has come to be expected as a regular accompaniment to rational 
social-action programs. Second, there has been a movement toward demanding 
more systematic, rigorous, and objective evidence of success. The application 
of social science techniques to the appraisal of social-action programs has come 
to be called evaluation research. 

A scientific approach to the assessment of a program’s achievements is the 
hallmark of modern evaluation research. In this respect evaluation research 
resembles other kinds of social research in its concern for objectivity, reliability, 
and validity in the collection, analysis, and interpretation of data. But it can be 
distinguished as a special form of social research by its purposc and the 
conditions under which the research must be conducted. Both of these factors 
affect such components of the research process as study design and its 
translation into practice, allocation of research time and other resources, and 
the value or worth to be put upon the empirical findings. [Wright 19671 

Social research here includes epidemiology and health research [Susser 19751, 
but not laboratory or biological research on nonhumans. 

ER then is a special kind of social research that concerns social programs 
and that involves decision making. 

Evaluations exist . . . to facilitate intelligent decision-making . . . if it does not 
improve the basis for decisions about the program and its competitors, then it 
loses its distinctive character as evaluation research and becomes simply social 
research. Most significant programs, we believe, are evaluated because some 
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decision maker wants help in figuring out what to do. . . . Perhaps the most 
common decision question of all is: Should we go on doing this or should we try 
something else, including doing nothing. [Edwards, Guttentag, and Snapper 
19751 

This chapter is the best place to discuss ER because its problems of design 
(also of analysis) are essentially similar to the designs for comparisons in 
other kinds of social research. Yet ER deserves separate mention because its 
aims and scope are more specific, restricted, and clearly defined than those of 
social research in general. Here is my list of features that tend to distinguish 
ER from other kinds of social research, although no clear, thin line separates 
the two on any single feature. 

ER involves specific social action programs. These programs may be 
local, national, or even international in scope; for example, some 
programs for contraception or against illiteracy have international 
organizations. Usually the programs need to be large enough to 
support the cost of ER designs that are good and large enough to have 
the accuracy and power to detect even modest changes. Most program 
improvements are modest, but they may have large social or financial 
consequences. On the other hand, programs that are obviously success- 
ful may not feel the need for ER. 
ER typically involves cooperation between an agency (office) in charge 
of the social action program and a research team (institute) that 
undertakes the ER. Some separation of the team from the agency is 
needed: first to facilitate objectivity for the research, and second to 
enhance public perception and acceptance of the objectivity of the 
results of ER. Sometimes a grantor (source) of funds for ER may also 
be needed, separate from both the agency and the research team. 

Active cooperation between the two (or three) parties is typically 
vital. The agency has prime responsibility for the objectives of research, 
but the research team must take the lead in determining the methods 
and conduct of the research. In the selection of and cooperation from 
research sites, both freedom for the team and cooperation from the 
agency are often needed. 
The choice of treatments and the observation of effects are both 
constrained by the practical needs of assessing the efficacy of the 
program under study. 

As a consequence [the team] has less freedom to select or reject certain 
independent, dependent, and intervening variables than [they] would 
have in studies designed to answer [their] own theoretically formulated 
questions, such as might be posed in basic social research. The’concepts 
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employed and their translation into measurable variables must be 
selected imaginatively but within the general framework set by the nature 
of the program being evaluated and its objectives. Wright 19671 

These constrained objectives have several principal consequences. First, 
the specified combined program becomes the treatment (independent, 
predictor) variable, and its several components may be left tangled. For 
example, a new program of school instruction may be a complex of methods, 
teachers, and settings. Second, the measured effects must focus on the 
intended objectives as principal response (dependent, predictand) objectives. 
Nevertheless, i t  may be wise, and sometimes possible, to add long-range 
effects to mere short-range objectives. Furthermore, in addition to the 
planned objectives, some unintended consequences, both beneficial and 
especially harmful, should be anticipated and observed. Even further, the 
team should also be alert to detecting some entirely unanticipated conse- 
quences; “serendipity” may sotnetimes yield more interesting results than 
the expected main effects. Third, the program must be evaluated within 
its natural settings, under its operational conditions, and for its intended 
population. In all these respects it need not be subject to more severe tests of 
falsifiability which would go beyond the narrow confines of the program’s 
specified conditions (7.6). Of course, passing such tests would add strength to 
the credibility, stability, and generality of the results of the ER. 

4. Timing for ER often entails special problems. It is difficult to complete 
the research, followed by policy decisions based on its results, before 
starting a program, though this would be preferable for several reasons. 
Changing or dismantling an ongoing program would encounter ob- 
stacles even when it failed to yield results, because defects and criticism 
are bitter medicine for people involved in its operations. Furthermore, 
when an ongoing program covers the entire population, finding 
appropriate sites for “control” comparisons also poses problems. 

On the other hand, completing the ER and making consequent 
decisions for proposed new programs before their implementation 
entail delays and funding problems. Furthermore, administrative 
obstacles may hinder introducing the proposed program for an objec- 
tively randomized sample, which entails the problems of randomized 
treatments ( I  .4, 3.1). 

When the program is introduced on a partial basis, the research 
team should persuade the agency to build a good design for ER into the 
selection of sites and the timing for its introduction. Even if the 
program is being proposed for all sites, some delay for a sample of 
control (randomized) sites may be requested. 
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The need for hasty decisions for ER stands in contrast with the 
ideals of academic research for noncommitment, for universal laws, 
and for falsifiability (7.6). Faced with these problems and uncertainties, 
the statistical approach counsels reliance on probabilities and on 
repeated testing with ER to check the continued effectiveness of the 
program after change in the environment and in “side conditions.” 

5. “Evaluations exist to facilitate intelligent decision-making.’’ Estimat- 
ing the efectiveness of a program goes beyond measuring its effects. 
First, it is not enough to demonstrate the mere existence of effects 
against null hypotheses of zero effects with P values of tests of 
“significance.” Nor is the explanatory power ( R 2 )  of the treatment 
variables the main issue. Rather, the size of the effect becomes the 
central issue. Furthermore, often several effects must be measured, 
combined somehow-formally in an index or in a decision process or 
informally; often negative effects must be balanced against positive 
effects. In any case, the effect of the program must be weighed against a 
realistic and acceptable measure of its true total cost. The cost 
efectiveness of the program, a multipurpose function, must be assessed 
by several decision makers, and this may involve not only the program 
agency, but public bodies, experts, program recipients (present and 
future), and the public at large [Edwards, Guttentag, Snapper 19751. 

6. The rules for publications of ER results may also differ from the 
accepted norms of academic social research. Reports to the agency 
typically must be hastened to fit early and fixed timetables. On the 
contrary, scientific reports to the public may be delayed, hindered, or 
prevented for reasons of confidentiality or lack of funds or lack of 
positive incentives. 

7. The preceding needs of ER for constraints, decisions, speed, and 
restrictions often conflict with the usual norms of academic researchers. 
Yet independence and objectivity, both actual and reputed, are 
needed by teams doing ER (as noted in item 1). One desirable form 
of organization consists of separated research teams within public 
agencies, but with guaranteed independence and reputations. An early 
( 1  937) example was the Division of Program Surveys, established with 
independence, to evaluate the many programs of the U.S. Department 
of Agriculture [Converse 1986, Ch. 51. A few other good examples can 
be found in the United States and elsewhere, but not often enough. 

The growth of ER in the United States has also been reflected in the 
growth of institutes and centers that have been heavily involved in ER 
and in similar research, some of them attached to universities but some 
independent. 



CHAPTER 4 

Controls for Disturbing Variables 
Not until attention has been efectually substituted for neglect as the general rule, 
will the statistics begin to show the merits of the particular methods of attention 
adopted. G B Shaw in Preface to The Doctors Dilemna. 
. . . nothing improves the performance of an innovation more than the lack of 
controls. Muench ’s postulate in Mosteller’s Experimentation and Innovations 
(1977) .  

4.1 CONTROL STRATEGIES 

4.1A Four Controls Against Biases 

Controls are needed in research designs for two essential reasons. One 
concerns the efficiency and economy of research projects and this may be 
stated in terms of reducing (“minimizing”) either the variances or the costs of 
the projects. The second reason concerns the biases arising from disturbing 
variables in nonrandomized designs; it is this I shall emphasize in this 
chapter. In true (ideal) experiments those disturbing variables are all 
eliminated by the design, becoming either controlled C variables or ran- 
domized R variables. Reducing the effects from randomized R variables 
by increasing the effects of controlled C variables is the major concern for 
controls in experimental designs. However, additionally, in nonexperimental, 
nonrandomized observational studies some disturbing D variables may 
remain as factors that bias the observations and the comparisons of 
explanatory variables (Section 1.2). Here we shall emphasize the reduction of 
those biases, as we discuss measures for controlling the disturbing variables. 

To deal with disturbing variables, one may resort to several alternative 
methods, depending on specific situations and resources. First, we may 
introduce appropriate controls into the sample design, i.e., into the selection 

96 
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TABLE 4.1.1. Four Loci of Control for Disturbing Variables 

I .  Control in the selection of cases: allocation 
2. Control in statistical analysis, c.g., weighting 
3. Direct checks for biases in the study variables 
4. Indirect checks for biases in disturbing variables 

process; and the various methods for controls in the sample designs will 
concern us most in this chapter. Second, controls may also be introduced 
later in the statistical analysis to control those disturbing variables that we 
failed to control earlier in the selection design. In the absence of either kind of 
control, or if these controls are inadequate, one may resort to checks on 
possible biases; and these checks may take two forms. Thus, third, one may 
check study results against reliable base data which are directly comparable 
and sometimes, but not often, available; and then try to trace the connections 
between biases discovered in the results to some disturbing variables. For 
example, the results of biases in pre-election polls discovered after elections 
are usually “explained” post hoc with references to differences in timing, or in 
behavior, or in populations, or in other factors and their combinations. Such 
direct checks may be available for aggregate values of the study variables, 
and then used for rough, global evaluation of the quality of data; and 
perhaps also used for adjusting their effects on subclasses for which check 
data are unavailable. Fourth, instead of direct checks on the biases of study 
variables, one may try for indirect checks on differences in potentially 
disturbing variables in the sample against available population data (e.g., 
checks of standard demographic variables). (See Table 4.1.1 .) 

For comparing two or more treatment groups, each of the four kinds of 
controls would be used mostly for establishing the internal equivalence of the 
treatment groups; thus controls would be used to establish the “internal 
validity” of the treatment groups. The problems of “external validity,” that 
is, of representation of the target population by the treatment groups, is a 
broader question for separate consideration (3.5). 

4.1 B Selection Control Versus Analysis Control 

Although we noted four kinds of possible controls for controlling disturbing 
variables, we concentrate on controls in the selection process rather than 
later in the statistical analysis, because this is a book on design rather than 
analysis. This may be exemplified by control through allocation of sample 
cases contrasted with procedures for weighting sample results. In the 
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literature of survey sampling this contrast is stated as stratification versus 
estimation. In experimental design the terms may be blocking versus 
analysis. Some of the following factors tend to favor one alternative and 
some the other. (See Table 4.1.2.) 

Take first the nature (scaling) of the disturbing variables: categorical 
variables can be better controlled by selection, whereas analytical controls 
are easier for continuous, metric variables, and especially for linear relations 
and normal variables. For example, geographical variables like regions may 
be better controlled by selection, whereas income may be more easily 
controlled in the analysis, perhaps by covariance (4.6). This distinction still 
exists, but less clearly these days than formerly for two reasons. Analytical 
controls of categorical data have been made less forbidding by statistical 
advances in both computing and statistics (4.6). Also, there is less confidence 
nowadays in linear models and in the normality of continuous metric da ta  

Second, arbitrary selection and allocation of sample size appears more 
feasible in experimental designs than in large-scale survey sampling, where it 
is more costly and dificult to manipulate sampling rates and numbers. 
Survey samples, therefore, may need and use analytical controls more often. 

Third, model-dependent research relies more readily on allocations and on 
selections based on models than does population-bound research, which 
aims to represent target populations (1 3). Perhaps such reliance on models 
versus populations is mostly a justification which follows that process of 
choosing a feasible research design rather than precedes it, as it should. But if 
the influence of feasibilities can lead to overreliance on models, we have 
another case of wishes fathering thoughts. 

Fourth, control by selection may seem rather simple when planning for 
only a few and only relatively simple statistics. But for more complicated and 
more numerous statistical results, additional controls for disturbing variables 
would be more difficult. Nevertheless, control by selection may prove to be 
wise foresight, especially for multipurpose surveys (7.3). 

Fifth, control by selection requires that information on all sampling units 
be available. But control by reweighting may be used with information 
available for only the sampled units and the population aggregates (4.7). 

Sixth, when controls through analysis result in grossly unequal weights, 
the variances of estimates can greatly increase (7.4). Then controls by 
selection and design should be preferred. 

Seventh, on the other hand, when control by design would involve 
expensive screening procedures in the selection process, then controls by 
weighting may be more economical. This choice is illustrated by contrasting 
matched cases (4.3) with matched subclasses (4.4) and with standardization 
(4.5). For this and for the fifth reason, religious identification, not available 
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TABLE 4.1.2. Strategies for Controls by Selection Versus Analysis 

For Controls by Selection For Controls by Weighting 
in Analysis 

1. Categorical data 
2. Experimental designs Survey sampling 
3. Model-dependent research Population-bound research 
4. Few, simple statistics 
5. Data or1 whole population 
6.  Highly unequal domains 
7. Inexpensive screening Expensive screening 

Continuous, linear, normal variables 

Complex, multipurpose analysis 
Reweighting of sampled units 
Small inequalities of weights 

for the population and difficult to screen, may be better controlled by 
analysis. 

The conflicting directions of all these criteria make it abundantly clear that 
we should not be swayed by only a single consideration and that we need 
informed judgment to guide our choice between the two alternative methods 
of control over disturbing variables. 

I also owe a two-edged explanation for this chapter and especially for 
Section 5 on weighting and standardization. First, these cover only a fraction 
of the tools available for statistical controls by analyses; but we cannot cover 
those vast fields nere. Second, the reasons for including weighting and 
standardization here (although they belong to analysis rather than design) 
are that they are the simplest and the most common tools, yet they are 
neglected in most of the modern statistics textbooks of today (though they 
had appeared in some older texts). 

4.1C Choosing Variables for Selection Control 

For most research objectives, such a profusion of potentially disturbing 
variables exists that we need some guidance for choosing a few of them for 
controls in the selection process. Although we may read about “controlling 
for all disturbing variables,” that advice is neither reasonable nor practical. 
There are just too many potentially disturbing extraneous variables that may 
affect the explanatory variables in most research situations, especially in 
nonexperimental designs. Practical and economic considerations force the 
researcher to confine controls to only a small number of variables (4.1 D). We 
should choose to control those that seem most important on theoretical 



100 4. CONTROLS FOR DISTURBING VARIABLES 

grounds, or such as appear most useful on empirical evidence from past 
research. These two criteria should ideally direct us to the same disturbing 
variables, but not necessarily in the real world of imperfect theories; and we 
should remember both criteria. For example, yearly income may seem 
theoretically like a good control for socioeconomic status, but education has 
often been found to be a better predictor, because it  can be obtained with 
greater accuracy and with more stability over time. 

Before discussing their desirability and relevance, we should also consider 
briefly the availability of data for controlling disturbing variables. Good 
information about availability is a practical asset for any research project, 
though the search should be guided by a framework of theoretical concepts. 
Availability may be more complex than a mere yes/no dichotomy: some 
variables may be easily accessible on public tapes, others may be obtainable 
only at great cost, and many at too great a cost or not at all. For control in 
the selection, the disturbing variables must be available for all units at each 
proper stage of selection and over the whole population frame. For example, 
information for all high schools of a state would be needed to select two sets 
of schools for treatment and control, if we want the inference from the 
comparison to have statistical (external) validity to all the state’s schools. 
However, a small proportion of “unknowns” may be tolerated either as a 
“miscellaneous” class or as a deliberate “exclusion” from the frame popu- 
lation (2.1). 

On the other hand, control in the statistical analysis can use information 
available on the sampled units only, when these are combined with aggregate 
population data in ratio estimates (4.7). Reweighting the data may be used to 
correct for differences in disturbing variables between treatment groups, 
because the data were not generally available and had to be obtained during 
the research itself. The researcher can also deal in the analysis with other 
disturbing variables, which were not controlled in the selection process 
simply because they were overlooked, ignored, missed, or unknown during 
the selection process. 

In  survey sampling one also faces similar restrictions when auxiliary 
(ancillary) data are not available for all units in the population. However, 
instead of confining the data collection to the sample, gains can sometimes be 
made by obtaining the auxiliary data from a larger sample, even though this 
can be much smaller than the population. This “screening” operation is 
known as the first phase of “two-phase” (or multiphase, or double) sampling 
[Kish 1965, 12.1; Cochran 1977, 121. This method can also be applied to 
observational studies and experiments. 

Let us now consider how to choose, for control by selection, some of the 
variables from a larger set of potentially disturbing D variables. It may be 
feasible and worthwhile to begin with a theoretical outline of all potential D 
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variables, whether available or not. A list of the unavailable potential D 
variables may impart salutary caution to researchers and also goad them 
perhaps to search deeper. The list of the available D variables may be divided 
into several classes. 

1. For some D variables control seems clearly (prirnafacie) necessary and 
possible. 

2. For other variables, controls may seem unnecessary or unimportant 
(perhaps tentatively and probably relatively) in comparison with other 
candidates. 

3 .  Still others may be subjected to formal tests to determine whether they 
should be among the controlled (1) or the uncontrolled (2). These “formal 
tests” would be more demanding presumably than the informal process used 
to separate classes 1 and 2 above. We may test or probe for one of two kinds 
of differences between treatments in the disturbing variables: either in their 
frequency distributions or in their values along that distribution. Happily 
either one of these two probes will be sufficient, because uniformity over one 
type is sufficient for lack of disturbing bias, and because both kinds of probes 
may be too difficult. First, if the frequency distributions of the disturbing 
variable are similar for both (or all) treatments, then even possible differences 
in effects do not bias the average effect. Second, if the effects of both (all) 
treatments are uniform over the frequency distributions, then differences in 
frequency distributions between treatments do  not bias the average effect 
(4.5B). This is clearly shown for the special case when the disturbing variable 
D has a linear regression on the study variable Y,  by Cochran [1965, p. 3; 
1983, 5.1). 

For example, suppose we wonder about the effects of age as a disturbing 
variable when testing the difference between two aspirins. If the age 
distributions are similar for the two treatment groups, the possible age 
differences in effects would not bias the average difference of the two aspirins. 
If the effects are similar for all ages, age differences between the groups would 
also not bias the average difference. If we cannot be satisfied with either kind 
of uniformity, a potential bias may lurk in the disturbing variable, age the 
example. 

Even if the differences of D classes are marked, and even if “statistically 
significant,” they may have only negligible effects on the overall means 
and on their differences if the extreme classes are relatively small portions 
of the entire populations. Furthermore, even in the presence of both kinds 
of differences, the net effective bias may still vanish from the difference 
(comparison) of the means if the diverse effects within classes happen to 
cancel each other (4.5B). Such canceling effects are not rare events, but they 
are rarely predictable or reliable. 

Some variables that can be controlled may be deliberately included 
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(combined) within the predictor variable for empirical reasons (for greater 
realism), although they coiild be considered extraneous on some theoretical 
grounds. Suppose, for exatnple, that we compare two techniques of class- 
room teaching: Should the motivations, attitudes, and qualifications of 
teachers be considered jointly with the techniques, as their necessary 
implementations? On the contrary, should they be considered as disturbing 
variables, whose effects we would separate, control, and measure? What 
about classroom sizes and class organization: are they D variables or part of 
the predictor? Similar questions about predictor and disturbing variables 
arise in most actual situations. Variables in research seldom appear as 
obvious, pure, unidimensional variables-like mass and time in physics. 
Many measured variables actually represent combinations or vectors of 
several basic variables that potentially could have been separated-ei ther 
operationally or only conceptually. But they are often treated jointly as a 
single variable, because of the restrictions or needs of the research situation. 
Thus the definitions of predictor variables may include those that in other 
contexts would be considered D variables. 

4.1D Numbers and Classes of Control Variables 

We may still be left with a longer list of available D variables, all of which we 
would like to control with selection, than we can afford to use. Faced with a 
number dof  disturbing variables, if we want c cells for each, we would end up 
with d‘cells, which can be enormously large even for small values of c and d. 
For unequal numbers ci ,  a similar picture emerges for the product II,c, of d 
terms. Though we may combine some cells that are small or  empty, the total 
number of cells can still be much too large for controlling. Such situations 
often produce conflicts about which variables to control and how many cells 
to use for each. Fortunately, the statistical methods of sampling and 
regressions oKer some answers worth borrowing. 

1. It is better to use several variables, each with only three to five classes, 
than many classes from one or  two variables. As few as three to five classes 
suffice to yield most (80 to 90 percent) of the control available from any 
single variable (Table 4.6.1). Thus for a limited number of cells, one can 
obtain better overall control with few cells each for more D variables than 
with many cells each for fewer D variables. This strategy resembles the 
choices for predictor variables in regressions and for stratification in surveys 
[Cochran 1968; Kish and Anderson 19781. I t  may be modified to use more 
(say, six) classes for one important variable and fewer (say, three) for the less 
important (7.3). These general rules obviously need care in specific 
applications. 

2. To choose a small number of control variables from a larger number of 
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D variables, one should spread those few choices among variables that are 
not highly interrelated. High correlations between control variables would 
reduce the contribution of each to the aggregate control. This problem and 
strategy resemble the choices both of predictor variables for regressions and 
of stratifying variables in sampling [Anderson, Kish, and Cornell 19801. 

3. Recommendations 1 and 2 hold with even greater force and efficacy 
when we design multipurpose studies for several study variables. Then it 
becomes even more likely that we need to control for several disturbing 
variables rather than for only one or two “optimal” variables and that the 
controls need to be “spread” rather than interrelated (7.3) [Kish and 
Anderson 19781. 

4. Sampling methods can also help to locate the class boundaries for 
variables to obtain increased control: “optimal stratification” calls for 
boundaries that yield classes with (approximately) equal values of Whu,,, the 
product of the size and variability within classes [Anderson, Kish, and 
Cornell 19761. That strategy tends to compromise between equal sizes and 
equal deviations for the classes, which tend to be inversely related in skewed 
frequency distributions. This can be approximated closely with continuous 
variables and roughly for discrete classes by combining some of them. But 
such opportunities for creating class boundaries are lacking for those D 
variables that come fixed in a few classes, and when the boundaries are 
determined by substantive/theoretical considerations. 

5. Perhaps several (or even many) D variables may be combined with 
factor analysis or clustering methods into a few variables. This can probably 
be done better for sets of related variables. These methods have been 
advocated for years for stratified sampling, but they have not yet been shown 
to yield better results than those given above. 

4.2 ANALYSIS IN SEPARATE SUBCLASSES 

For this most obvious and common method of control the sample is 
separated into subclasses according to some disturbing variable, and means 
and their differences (Fa; - Lbi) are then computed for the separate 
subclasses, denoted by i. The subclass differences can then be compared with 
the overall di5erence ( J o  - J b ) ;  studies of these relationships through 
inspection and introspection is perhaps the most common method of survey 
analysis. 

Subclass analysis is also known as domain analysis, because sample 
subclasses represent corresponding domains of the population (2.3). This 
method is used not only for control of disturbing D variables, but more 
prominently for finding and interpreting relations among explanatory E 
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variables (predictors and predictands). Explanatory analysis is an important, 
vast, and separate subject we cannot hope to cover here. It is covered briefly 
and well by Moser and Kalton [1971, 17.41, with references to fuller 
treatments [Hyman 1955; Rosenberg 1968; O’Muircheartaigh and Payne 
19771. 

Our discussion here must concentrate on the use of subclasses i for 
discovering possible effects of disturbing factors on the overall predictand 
response (y, - Y b )  attributed to the predictor treatments (a ,  b). We 
concentrate on the use of subclass differences (Jar - yb,) to test the overall 
difference (j, - y b )  against possible effects of potentially disturbing D 
variables, denoted by i. We only mention incidentally some deep problems 
that can arise in such analysis. First, when subclass differences are found that 
seem large and interesting, how far should their causes be explored and 
explained? To exploit the discovered differences, one can transform these 
disturbing factors into explanatory factors. Such transformation and expan- 
sion of research objectives are especially tempting when large subclass 
differences ( jar  - Ybr)  are found despite small overall differences (y, - y b ) .  
Second, subclass comparisons lead to questions of representation. Third, 
they lead to questions of randomization and of the balance of treatments 
over subjects (elements). 

Subclass means j l  represent the simplest forms of control, and the 
comparison (vl - y,) can denote subclasses from the same control variable. 
For example, it could represent age-specific birthrates for two age groups 
( i , j )  of mothers. However, (Y, - Y b )  can also denote a more complex 
concept: the difference between two treatments, hence of two populations; 
for example, the difference in birthrates in two populations exposed to two 
contrasting treatments of contraception (a  and b).  Subclass control is 
denoted by (JaI - ybr), for example, age-specific (i) differences as controls 
for the overall difference between birthrates comparing the two methods 
(a, 6)  of contraception. 

Proportions p denote a special form of means, which are very common for 
the counts of categorical data in social (and other) research. The values of 
p = y / n  can range only from 0 to 1 ;  and in pa, = Ya1/nar,  the y,, range only 
from 0 10 nor, because they are based on elemental categoridal counts of 0 and 
I .  However, births per woman in integral counts of births (0, I ,  2, 3, . . .) 
have wider ranges, and other data (weight, income, net savings) wider still. 
The proportions ( p a  - p b )  can also denote the difference in death rates from 
two treatments (a, b), for example, and (par  - pb l )  the age-specific controls 
( i )  for that difference in death rates. Furthermore, instead of differences, the 
effects of the treatments can also be measured first by the ratios p, /ph and 
then by the ratios Par/pbr in the control subclasses i. When the proportions can 
be viewed as probabilities, the ratios are called likelihood ratios. In categori- 



4.2 ANALYSIS IN SEPARATE SUBCLASSES 105 

cal data analysis, furthermore, odds ratios are often used, which we can 

The sources of the data for the difference (y, - Y b )  can vary greatly. The 
treatments a and b may be assigned by randomization in ideal experiments. 
Or they may be separated and controlled in observational studies. Or the a 
and h may be subclasses from data of a sample survey. For example, the 
( j ,  - j h )  may denote female-male differences in a survey study of the 
“gender gap” in voting behavior, or in occupations, salaries, death rates, etc. 
Then the (Fa; - j b i )  denote female-male differences computed within 
subgroups to control for disturbing variables (e.g. age or education). 

We cannot explore here questions about how to choose disturbing 
variables for controls by subclass analysis. Clearly, more than one disturbing 
variable will be tested in most situations. Often two or more will be used 
jointly; in such cases the subscripts i in (poi  - phi) denote subclasses created 
by several variables. Multivariate controls should yield more powerful tests 
for reasons similar to those for designs (4.1C), although different kinds of 
variables should be preferred for control by analysis (4.1B). Yet control with 
subclasses has a numerical limitation in common with controls in selection: 
The number of variables and classes cannot be large, because of bounds 
imposed by the sample sizes, and also by limits on the complexity of analyses. 
To use more disturbing variables and also more classes, all simultaneously, 
one may resort to more complex multivariate techniques, including cate- 
gorical data analysis (4.6). 

Let me juxtapose two entirely different aims for subclass analysis: one to 
find predictor variables to “explain” the relations ( J ,  - Yb), the other to 
test the relations ( j T ,  - y b )  against potentially disturbing variables. When 
subclasses are used for causal analysis, i.e., for discovery of explanatory 
factors for a difference ( p ,  - p b )  of a dichotomous variable, the research 
aims to find (poi - phi) with maximal discriminatory power. The ultimate, 
which is seldom even approached, would be a deterministic model: when the 
subclass values poi and phi would be either 0 or 1, and the (poi - phi) either 
+ 1 or - 1 .  That is, the subclasses i would explain entirely when and where 
the treatments a or h, respectively, are either entirely successful (0) or 
unsuccessful (1). Also for more general variables we should aim to increase 
(maximize) the differences among the ( J a i  - Y b i )  for different i. 

On the other hand, in using subclasses for controlling disturbing variables 
the principal aim consists in testing the overall difference (7, - Y b )  against 
subclass differences (jai - j h j ) .  To the degree that the (VUi - j b i )  appear 
similar to the (Y, - Yh) ,  this overall difference survived the tests of 
falsification by the potentially disturbing factors represented by the sub- 
classes i. Surviving the severest tests of falsification yields the strongest 
confirmation of the treatment effects in ( y ,  - Yb) .  With this use of Popper’s 

symbolize with [poi/(1 - p u i ) l / b b i / ( I  - Phi)] .  
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falsification method, confirmation is approached to the degree that the 
(j, ,  - yhr)  resemble the (j, - j b )  under the severest testing with the 
subclasses i (7.6). In other words, as we inspect different subclasses, when 
controlling for disturbing variables, we hope to find similar (yo, - yb,), 
whereas for explanatory E variables we aim to increase those differences. 

We are concerned mainly here with subclasses for controls, hence this 
sharp contrast. This conceptual contrast is probably novel; and it is not 
formulated sharply in the minds of researchers. However, this distinction of 
the two aims of subclass analysis may also be applied to other research 
objectives, to more than two treatments, and to single means j or  p ,  etc. In all 
these cases we should distinguish the search for predictors with “explanatory 
powers” from the tests of those explanations against potentially disturbing 
variables. 

“Simpson’s purudox” is a dramatic device for portraying problems with 
subclasses. We clearly have pa = C w,,p,, for nonnegative relative weights 
(0 5 w,, s I )  that add to Cw,, = w,= 1. Often the weights denote 
numbers of cases and w,, = n,,/n,; then p a  = Z(n,,/n,)(y,,/n,,) = 
C yo, /n,  = y,/n, .  The p ,  is an average of the par;  hence it must lie between 
their extremes (the largest and the smallest of the p,,) ,  not outside them. 
Similarly, p b ,  as an average of the pb,,  must lie between their extremes. 
Simpson’s paradox states that it is possible to have ( p ,  - p b )  2 0 in spite of 
having (po ,  - pbr)  I 0 for all the i. For example, one may have a new 
treatment (a)  better in each of two clinics (1, 2), so that ( p U l  - p b l )  < 0 and 
( p o 2  - p b 2 )  < 0, yet the old treatment (6) better overall ( p ,  - p b )  > 0 
where p stands for failure or death. This can happen if one clinic that uses 
more of the new treatment also gets more of the high-risk patients [Blyth 
19721. In that case the subclasses (clinics) reveal the better new treatment 
(assuming random assignments within clinics), which remains hidden in the 
overall difference. 

On the other hand, the overall difference presents more meaningful results 
in an example of income subclasses: 

Between 1974 and 1978, the tax rate decreased in each income category, yet the 
overall tax rate increused from 14.1 percent to 15.2 percent. Again, the overall 
rates are weighted averages, with the tax rate for each category weighted by 
that category’s proportion of total income. Because of the inflation, in 1978 
there were relatively more persons and consequently relatively more taxable 
dollars assigned to the higher income (i.e., higher tax rate) brackets. [Wagner 
19821 

But if we were ignorant of the inflation as the real explanation, we might 
have accepted the decreases within categories as more meaningful than the 



4.2 ANALYSIS IN SEPARATE SUBCLASSES 107 

overall increase. For other good examples see Cohen [1986] and Bickel, 
Hammel, and O’Connell [1975]. Cohen writes: 

Though every age-specific death rate in Sweden is lower than the corresponding 
age-specific death rate in Costa Rica, the crude death rate of Sweden exceeds 
that of Costa Rica. [Because] The Costa Rican population has a much higher 
proportion of young individuals, whose death rates are less than those of old 
individuals in either Costa Rica or Sweden. 

“Simpson’s paradox” concerns reversals of the signs of differences 
between the ( p ,  - p b )  and the (p,, - Pb,), and “collapsing tables” may be a 
better name for the general phenomena [Fienberg 1977, 3.8; Yule and 
Kendall 1965, Ch. 21. The “paradox” presents only a special case of more 
general divergences between the overall results (Yo - J b )  and the 
(YOl - yh,);  or even between the overall mean j and subclass means y,; or 
other divergences between overall and subclass results. We refer here to 
divergences beyond mere sampling fluctuations (to be investigated with 
sampling errors), hence divergences similar to those one could presumably 
find in the population also. 

Biases investigated with subclasses of disturbing variables tend to vanish 
when the differences in either the weights (wOl - wbI) or the subclass means 
( j , ,  - yb,)  tend to zero (4.5B). Investigations of reasons for differences 
(j,, - should lead to substantive analysis of relations between the 
disturbing variables and the explanatory variables. On the other hand, 
differences in (wal - wb,) should lead to questions about control. But control 
through separate subclass analysis evades the task of yielding a single 
combined estimate of the relationship (Yo - yh) .  This task is accomplished 
in later sections that present alternative methods for eliminating biases from 
specified subclasses by equalizing their weights, w,, = wb,. This can be done 
either in the selection design (4.3 and 4.4) or by reweighting in the analysis by 
standardization (4.5). 

Restriction to a single subclass may be regarded as a special, or extreme, or 
degenerate case of control by subclasses: To  avoid effects from disturbing 
variable(s) the researcher deliberately restricts the scope of the research to a 
single subclass of the disturbing variable(s). Such restrictions may be justified 
if imposed by stringent economic demands and if they bring commensurate 
savings. These considerations lead, for example, to community studies 
restricted to a single local area or to a single social organization, school, or 
firm (3.1A). But such units seldom actually contain a single, pure type of 
population that is free from disturbing factors. Actual pure types are 
exemplified instead by the constants that specify highly standardized 
materials and conditions for some types of physical and chemical measure- 
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ments; but then in practical applications, allowance must be made for 
imperfect materials and standardizations. Furthermore, such control is 
neither practicable nor desirable in social research (also seldom in medical 
or biological research) because its subjects (humans, animals) cannot be 
standardized. The penalty for restricting research is often a drastic narrowing 
of the inferential scope of its results; this was opposed and countered by the 
factorial designs of R A Fisher (1.3). 

Limitations imposed by “pure” types of subclasses are more severe than 
those from local studies (3.1), because these latter may cover a broader 
population that is closer to the population(s) of inference. Hence for 
inferences from pure types the need for replications with other pure types 
becomes even greater. By the same token the opportunities for testing against 
possible falsification can also be increased by choosing very different “pure” 
types for the several subclasses (7.6). 

The situation is quite different when a subclass is selected merely for con- 
venience in sampling or in data collection. Good examples are two studies 
dealing with cohorts; four birthdates were used for longitudinal studies of 
4/365 = 1 percent sample censuses in the United Kingdom [Douglas and 
Bloomfield 19561; and a single week’s birth cohort is followed in Sweden 
[Janson 19841. For studies of schoolchildren, specified grades in schools have 
been used conveniently; grades are more convenient than exact years of age 
would be, and they may be as appropriate for defining the population of the 
subclass. Convenience and appropriate definitions may coincide; for example, 
one study was confined to women giving births to their third babies in the 
hospitals of Detroit [Freedman, Thornton, and Camburn 19801. 

4.3 SELECTING MATCHED UNITS 

This method will first be described in its extreme form of case-by-case 
matching, which is perhaps the most common method; later some modi- 
fications will be added. Two categories, a and b, of the predictor variable 
are used to establish the two subpopulations to be compared. Similar sub- 
classes i are formed in both subpopulations in accord with an appropriate 
subdivision of the control variables. One unit is selected from each subclass 
for both categories, thus nai = nbi = 1. The differences di = (Yai - ybi) 
in the subclasses become the basis for data analysis, whose problems we 
cannot explore. We merely point to problems of inference, especially the need 
for superpopulation models when an entire small subpopulation is used for 
the a treatment. 

For a specific example take the study “Unemployment and Migration in 
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the Depression (1930-1935)” [Freedman and Hawley 19491. The data came 
from schedules of the month-by-month history of the Michigan Population 
and Unemployment Census of 1935. The sample of group a 

consists of all those white male migrants to Flint or Grand Rapids from other 
places in Michigan, who were at least 25 years old at the time of migration to 
the cities. . . . Flint and Grand Rapids were selected as the destination points to 
be studied, because they are very different both with respect to population 
history and economic base. Therefore, it was hoped that studies of the migrants 
to each place might be treated as separate “experiments.” Agreement to the 
findings for the two cities should give them greater validity. 

This is a clear statement for “internal validity” in local studies (3.IB) and for 
falsifiability (7.6). For groups b and b’ 

each migrant was “matched” with a “control” non-migrant at the place from 
which he came and another at the place to which he moved (either Grand 
Rapids or Flint). The characteristics used for matching were age (within 
3 years), occupation (in terms of the major census socioeconomic groups), 
occupational history (in terms of change between socioeconomic classes) 
education (within 2 years of school achievement), and marital status. 

The two control groups (b  and 6‘) for the one treatment group (a) form 
the basis of two studies to find “that the differential in unemployment 
occurs after migration, not before . . . that in a depression migrants tend 
to be at a disadvantage in the new labor market to which they move.” 
Furthermore, these two comparisons were part of a larger “series of studies 
of the relationship between migrant status and a number of other character- 
istics (education, occupation, occupational mobility).” 

Several aspects of this example are common to case-by-case matching. 
The data are taken from existing schedules; detailed matching by field 
collection would entail prohibitively high costs. Often the “experimental” 
treatment group a is small compared with the numbers available for 
“control” treatment b and compared with the number of groups used for 
selection controls i .  (We just used the word control in two different senses.) 
For those two reasons we can assume that a single case for each “experi- 
mental” subclass is common, thus nai = 1. Another reason is the large 
number of subclasses formed when the controlled variables are numerous, 
five in our example. But the nbi for the “control” treatment are often more 
numerous; then questions about methods for selecting among them arise, 
especially if it is too difficult to sort out separately all the nbi candidates for 
each subclass. The example illustrates a common method: 
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The procedure was essentially to enter the schedules at a point determined by a 
system of random numbers, examine the schedules serially until a match was 
found, then to select a new starting point and to repeat the process. Several 
alternative methods involving selection of all possible eligible matches and 
random selection among them were dismissed as prohibitively time-consuming. 

The authors recognized the subtle source of potential bias in selecting the 
“next eligible” listing [Kish 1965, Sec. 1 1.13, but found no actual bias in the 
results. 

Even when the ‘‘control’’ cases are more numerous, cells with unmatched 
cases with nhi = 0 often occur, owing both to sampling and to structural 
variations in the b subpopulation. “Of the 360 migrants to Flint 312, or 87 
percent were matched at the destination and 296, or  82 percent at the source- 
points. Of the 186 migrants to Grand Rapids 170, or 92 percent were 
matched at the destination and 149, or 80 percent at the source points.” We 
note here that the proportion matched can be increased, even to 100 percent, 
by relaxing controls to create larger cells whenever nhi = 0. On the contrary, 
i t  may be possible to obtain “better” matches whenever the cell sizes are 
greater than 1 by increasing the stringency of controls. 

The case-by-case matching of units represents an extreme emphasis on 
“better” control of individual cases with multivariate matching. On the other 
hand, with looser fitting, with fewer subclass cells, and with larger samples we 
may achieve stricter random selections and lower variances (4.4). 

Methods for case-by-case matching of units have been developed recently 
in other areas, together with procedures for using computers for data from 
tapes or disks. Methods have been developed in epidemiological and medical 
research and general treatments are given in chapters on “matching” in 
several books [Cochran 1983, Ch. 5; Anderson et al. 1980, Ch. 6; Klein- 
baum, Kupper, and Morgenstern 1982, Ch. 18; Fleiss 1973, Ch. 81. 

Imputation for missing items has been developed mostly at the U S .  
Census Bureau and at Statistics Canada. The procedures impute missing 
items for class 1 cases where those items were omitted from class 2 cases that 
have them. The procedures use multivariate subclass matching of schedules, 
to impute to a minority subpopulation with missing values (1) the values 
from a larger subpopulation with the needed data (2). The multivariate, case- 
by-case method has both aims and procedures similar to our present needs, 
and researchers can benefit, I believe, from the large, new literature on 
machine imputation [Kalton 1983; Rubin 19781. 

High-speed computers can be used to find easily the “next eligible” 
matching case from the b subpopulation with a “hot deck” procedure for 
imputation. Instead of using the “next” case on the ordered list, the 
procedure could be modified to select a “better fit” with additional variables. 
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Other procedures (“modified hot deck” imputation) can identify with fast 
computers the entire set nhi of matches for each missing item and select one 
randomly, thus eliminating a possible source of potential bias. Furthermore, 
with all nhi potential matches identified, it may be possible to use several (or 
all?) of them for matching each missing a case, thereby decreasing drastically 
the variance of the comparisons (of the dj values) [Kalton and Kish 1981; 
Rubin 19781. However, this extension of the method fits better into 
Section 4.4. 

Another extension needs only a brief mention: the method can be used not 
only for two subpopulations a and b, but also for more: c, d, e,f, etc. In our 
example the migrants (a) were matched with nonmigrants a t  both the 
departure-source ( b )  and at the arrival-destination (b’); and other reports 
from that study also made additional comparisons. 

Matching of data files presents some similarities, but fewer procedures 
directly applicable to our present purposes. There are two basic types of 
matching for files: “exact” and “statistical” [Radner 1979; 19801. For exact 
matching, some linkages of data for the same units (e.g., persons, firms) are 
sought; these require using identifiers such as names, addresses, Social 
Security numbers. For statistical matching, linkages for “similar” units are 
sought and expected; and files based on samples, with only few accidental 
units (or none) in common, are the rule. Statistical linkage uses “similar” 
characteristics, based on several relevant (related to the study) variables, 
rather than unique identifiers, and thus resembles case-by-case matching in 
some ways [Radner 1979, 1980; Rodgers 19821. 

4.4 MATCHED SUBCLASSES 

Section 4.3 dealt with case-by-case matching, where one case with “control” 
treatment ( b )  is selected from the nh, 2 1 available to match each single (a)  
treatment, so that nu, = nh, = 1 for the analysis. At the other extreme, 
Section 4.5 describes methods of standardization for utilizing all available 
nor 2 1 and nh, 2 1 cases, adjusting the numbers by weighting so that 
w,, = wb,. Here we explore briefly some possible procedures that lie between 
those two extremes, and these compromises also illuminate the extremes. 

Case-by-case methods are better suited to small samples, especially where 
n,  = Enn,  is small. There are many subclass cells created, because emphasis 
is on close fits of cases to reduce bias, and for most cells the n,, are either 1 or 
0. In contrast, standardization can use large samples, with relatively few 
controls and few subclass cells; therefore sorting out all n,, and nh, for all 
subclass cells (i) is feasible; sampling may be introduced if samples are larger 
than needed. 
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For matched subclasses, along with bias reduction, sampling variation 
should also be considered for choosing among the several alternative designs 
briefly noted below. 

1. Use nbi > 1 to reduce sampling variation. This may be applied even 
when all or most nu; = 1. It is possible either to produce an average Y b ;  

for all nLi values of the yhi values used, or to compute separate values of 
d; = (yui - yb; )  for each [Kalton and Kish 19811. Both methods 
should yield the same mean difference, but other analyses could differ. 
A conflict arises: to use all available nbi cases of the “control” treatment 
b in the ith cell would minimize the variance, but using a constant kb 
cases for each cell (where nbi 2 kb 2 1 and nai = I )  may simplify the 
statistical analysis and computing variances. The presence of several b 
cases within each cell will also contribute to knowledge of within cell 
variations. Maintaining a constant kb 2 1 may involve replicating a 
few cases in cells where the actual nb; < kb. 

2 .  Use constant sizes fur both a and b, with kb 2 k,  2 I .  For simplicity’s 
sake this may be adopted when the supply of the nUi and nb; is so large 
that we can afford to sample from them. Equal constant subclass sizes 
k,  = kb may seem the simplest. However, kb > k, may seem advisable 
( I )  when the supply of b cases is larger, or (2) when the handling of b 
cases is less expensive. This latter would accord with principles of 
“optimal allocation” (7.3E). 

3 .  Use equal sizes within subclass cells: nu; = nk; = n;. When the nu for 
treatment a is small, the nai will determine the sizes of the subclass cells. 
The n6; = nu; cases are selected at random from the nbi > nb; cases 
available in the ith cell to match the nai cases. In this respect it resembles 
case-by-case procedures, except that now the nu; cases in the cells are 
computed together. It also implies weighting the overall means by sizes 
nu; available for the “experimental” treatment a as weights, and it may 
be viewed as a special case of standardization procedures in Sec- 
tion 4.5. This can be modified to nki = knui with k 2 1 .  In other cases 
nbi, or some other cell weights, may be adapted aS the standard. 

Matching by selection wastes the reservoir of cases and the effort required 
for selection. These two kinds of waste become large when a relatively rare 
treatment a is matched against a treatment b from a large total pool of cases. 
If that pod  is very large (e.g., a population census), the wasting of cases may 
not be too important, but the effort and expense needed for selection may still 
be exorbitant. If both treatments a and b are large, the search for matches 
would be even more difficult and consuming. That is why I placed case-by- 
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case matching into the context of searching records. With modern computers 
for searching tapes, such tasks are becoming increasingly possible. 

On the other hand, field screening to find multivariate matches would be 
much more difficult and more expensive. Therefore, it is seldom done, though 
theoretically possible. That possibility would be increased with marginal 
matching of univariate variables [Yates 1949, 3.41. 

Reducing the dimensions of matching to single or fewer variables may 
also be needed for sampling from records and tapes. This need arises when 
each of several records contains only some of the variables and the matching 
must be along several margins of the full multivariate structure. Diverse 
literature exists in several fields that are only thinly related [Deming 1943, 
Ch. 7; Purcell and Kish 1980; Rodgers 1984; Radner et al. 19801. 

4.5 STANDARDIZATION: ADJUSTMENT BY 
WEIGHTING INDEXES 

4.5A Weighting Versus Matching by Elimination 

In Sections 4.3 and 4.4 the sizes of disturbing subclasses were controlled by 
equalizing them in the selection process, so that nLi = nLi cases were selected 
for analysis. Here we propose to retain all the available nOi and nbi cases, but 
equalize these subclass sizes by using common weights wi for both 
treatments a and b within subclasses i, with C wi = 1. Thus by computing 
C wi(Jai - Jbi) instead of C wOjpOi - C wbjJbj, the effects of different sub- 
class sizes for a and b are removed from the reweighted estimates of the 
differences between treatments. 

Equalizing the sizes of subclasses by weighting serves as a direct substitute 
for equalizing by subselection. That is one reason for including standardi- 
zation here, whereas othe; methods of statistical analysis have been excluded 
generally from this bock. Furthermore, standardization is not covered in 
most textbooks on statistics, although it can be found in some textbooks on 
economic statistics and in the demographic literature [Shryock and Siege1 
1973; Kitagawa 1955, 1964; Yule and Kendall 1965, Ch. 25; Hill 1961, 
Ch. 11. Also, this section can well serve to reveal the basic nature of 
adjustments for disturbing variables. 

Matching by selection wastes the reservoir of cases; it also increases the 
efforts required for selection. Equalization by weighting reduces those losses, 
but the weighting process requires more computation and more complex 
analysis. The ‘‘losses’’ here refer to increases in the variances that result when 
the number of cases matched is nbi from a larger pool of nhi available cases; 
variance is increased roughly in the ratio of nbi/nbi, or nbi/noi in case-by-case 
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matching. In this comparison we consider only the variances, because we 
assume that weighting versus selection for controls have similar effects for 
reducing biases from disturbing variables. 

Those losses are reduced when all the available flb = I:f lbi  and all the f l ,  

cases are used in nu sets. But the losses are not entirely eliminated, because 
the weighted estimates tend to have higher variances than a similar number 
(nu + nb)  of cases from a matched selection of ( f l ,  + f l b ) / 2  pairs would have. 
Weighted samples tend to have somewhat higher variances per sample case 
used than unweighted samples (7.5). But this increase in the variance due to 
weighting is not as serious as that arising from elimination. 

Furthermore weighting also requires more computations and more 
complex handling. These are facilitated by modern computers, but “human 
errors” still lurk in the practical aspects of handling weights. Theoretical 
difficulties can also be expected with more complex estimates, including 
sampling errors, tests of significance, and analytical statistics (7. I ) .  Never- 
theless, weighted estimates often are and should be used because they 
provide more economic methods for controlling disturbing variables than 
eliminations of cases. 

A numerical example may help explain the increases in variance caused by 
eliminations and by weighting, as well as the great difference between them. 
Suppose that for each of five subclasses the sizes of the a treatment are equal; 
thus n,,/n, = wui = 1/5 for each subclass. Also suppose that the b control 
cases will be eliminated to the a standard, though originally the b cases were 
greater in the ratios of ki = flb;/flui = 1 ,2 ,  3,4, and 5. Therefore the overall 
increase of the variance due to elimination of cases in the five subclasses 
comes to (1/5)(1 + 2 + 3 + 4 + 5) = l5/5 = 3. On the other hand, the 
increase of the variance due to weighting down the flbi cases comes only to 
1.37. The following details may be skipped by uninterested readers. 

Generally, this increase of the ratio of the variance is I: wiki, where ki is the 
ratio of elimination and w; the weight in the ith subclass. If the k i  increase 
monotonically so that kj = 1, 2, 3 ,  . . ., K,  and the subclass distribution 
is rectangular so that wi = 1/K, then I:wiki = ( I /K)[K(K + 1)/2] = 
(K + 1)/2. This can be large for large values of K (50.5 for K = 100) and 
such a spread in elimination ratios is of first importance. The distribution of 
weights is of second importance in most situations. Even less important are 
usually the differences in subclass variances 0; and costs ci, which have been 
neglected here. 

For adjustment by weighting we want to compare the variance of the 
weighted cases with a similar total number flb = c flb; of unweighted cases, to 
be able to judge how much the “effective size” of the sample is reduced by 
weighting. This and the increase of variance can be measured roughly and 
quickly by 1 + L = (C w,k,)(C wi/ki) .  Note the new term (I: wi/ki), which in 
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our example amounts to (1/5)(1 + l /2 + 1/3 + 1/4 + l/5) = 0.4567. This 
new term, (X wi /k i )  I 1, tells us how much lower the variance is for 
weighting than for elimination by those factors. The variance ratio 1 + L = 
(C wiki ) (Z  w i / k i )  comes to 3 x 0.4567 = 1.37, and L stands for the propor- 
tionate loss due to weighting. The factor 1 + L may be viewed as a 
“design effect” due to weighting. This is always positive unless the ki values 
are all the same constant and cancel leaving (C wf) = 1. The value of 1.37 
for I + L corresponds to L = 0.37 for K = 5 in row 5 of Table 4.5.1. 

The values of (C wjki)(C w i / k j )  are seen there to be sensitive to the spread 
of k i ,  and they increase monotonically to 1 + 1.62 = 2.62 when K = 100. 
But this is much less than the increase of ( K  + 1)/2 = 50.5 for elimination; 
less by the ratio ( C w i / k j )  = 2.62/50.5 = 0.052. This results from the 
decrease of (C wi /k i )  as (C wik j )  increases, while the product increases only 
slowly. In this model we assumed the integral values of ki = 1,2, . . . , K .  The 
distribution of weights is of secondary importance and 1 + L varies for 
diverse distributions mostly from 1.2 to 1.4 for K = 5; and the 1.37 we’saw 
for the discrete rectangular distribution (w;  = 1/5) is higher than most. The 
highest values of 1 + L for any fixed K result from the dichotomy 
with W ,  = W ,  = 1/2; for K = 5 this comes to (1/2)(1 + 5).(1/2j 
(1 + l/5) = 1.8. For K = 100 it goes way up to 25.5 for the dichotomy, but 
only from 1.3 to 6 for other distributions of the w;.  

Note aIso that only the nhi would be affected by both elimination and 
weighting, and the nOi remain unaffected, because all cases were used without 
weighting. Hence the variance increase of 3 would be affected by elimination 
in the ratio of (1  + 3E,/Eb) up to K = 5, and only in the ratio of 
(1 + 1 .37E,/Eb) by weighting. These ratios may be much less than 2 if the 
ratio i i , / i i h  is small, because the pool of nbi cases is much greater than the nai. 
The Za and iih denote appropriate averages of the n,; and nbi. 

We assumed simple random sampling for variances of of/ni and constant 
values of of, and we disregarded cost factors. All these can be considered in 
full treatments, which are available with derivations, limitations, and tables 
elsewhere (Table 4.5.1) [Kish 1974 and 1965a, 11.71. 
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4.5B Standardization 

For a simple presentation, conforming to that for case-to-case matching, we 
assumed in Section 4.5A that the Wai will be the standard base to which the 
wb; become standardized by either elimination or weighting. This describes a 
common situation in case-by-case matching where the nai represent a new 
treatment or a relatively small subpopulation, whereas the nbj represent a 
larger subpopulation or even the residual population. With standardization, 
however, one must raise the question of what should be used as its base. We 
mention here six alternatives from a larger possible number: Choices can 
vary and they should depend on the substantive needs of research. Assume 
relative standard weights for each alternative, so that C WSi = 1, and 
W,; = nsj /Cnsj .  The adopted base W,; may be any of the following. 

1. The weights of Wai for the a subpopulation, representing a new, 
changed, or experimental treatment; or representing an unusual or rare 
subclass. 

2. The weights Wbi for the b subpopulation, representing the standard, 
old, accepted, or “control” treatment; or representing the residual or 
the entire population. 

3. The arithmetic mean ( Wai + Wbj)/2 of (1) and (2). 
eometric mean J m / C , / m  or ,/=I 

4. I: Th? (n,;nbj), or some other average. 
5. Weights Wi from some standardized population, other than either a or 

b, are often used in demography and economics. 
6. Statistical theory provides a clear answer, although to a somewhat 

different question: how to choose the Wi to minimize the variance of 
C Wj(Yai - y b i ) .  This differs from the substantive questions addressed 
by alternatives 1 to 5 ,  but it may be particularly appropriate for 
experimental situations with small nai and nbi. Then the Wi should 
be chosen to be inversely proportional to their variances: Make 
Wicc 1/(crZaj/nai + c2bi/n,,i). When the unit variances are (approxi- 
mately) equal, make Wicc najnbi/(nai + nbi) [Kalton 1968; Keyfitz 
19531. These assume simple random sampling and they disregard cost 
factors, which can be introduced along with design effects [Kish 19761, 
(7.1). 

Fortunately, whether we use one set of weights or another usually (though 
not always, nor necessarily) makes only for smaller (second-order) dif- 
ferences, compared with frequently large (first-order) differences resulting 
from merely using common weights to control for the effects of disturbing 
variables. To demonstrate this, let us use a simple model to decompose the 
effects of weighting on the difference of two means: 
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View the first term as the component for the difference of means that 
interests us, freed from the disturbing effects of differences (w,; - wbi) in the 
weights of subclasses. The second term is the component due to the weight 
differences to be removed; and it is removed when we use the first component, 
but only to the degree that we can neglect the third component. This third 
component is an “interaction” term that is small to the degree that weight 
differences are not consistently and strongly correlated with the differences of 
the subclass weights. Another view of this component is also instructive: 

Thus when the “interaction” component is negligible it matters little 
whether we use the wui, the wb;, or some average value between them. 
In most situations of negligible interaction the same probably holds for 
reasonable bases from other sources; these must be reasonable bases because 
mathematical contradictions can always be found. 

We shall explore components further in Section 4.5C on indexes, and we 
merely note here that the choice of weights can be important in some 
situations. This is clear to economists concerned with price indexes, who 
spend much effort on the choice of weights for different items to measure the 
movement of prices. For example, for decades in the United States the prices 
of electrical goods remained steady, for electronic goods they decreased, 
while medical expenses “skyrocketed.” International comparisons are most 
revealing: U.S. newspapers often display the high prices of autos, TV sets, 
clothes, and blue jeans in Communist countries. But they rarely report that 
their rents are only 5 to 10 percent of income; that health care, education, 
books, amusements, and public transport are almost free; and that basic 
foods sell (often rationed) for low prices (subsidized from the high prices of 
autos, TV, clothes, etc.). Without expressing preferences, we comment on the 
biased weighting of prices in the media-ours and probably theirs. The 
message is all in the weights, and they do matter there. 

Large differences due to the choice of a standard base can therefore occur 
in diverse social sciences. However, different reasonable bases for standards 
will usually yield similar results. Perhaps the easiest check in many situations 
is to compute the (Yo, - j b l )  differences with both w,, and wb, for weights. As 
(4.5B2) shows, a negligible difference between them indicates small “interac- 
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tion.” If not negligible, it may provide clues for directions to further research 
for better standards. Computing and presenting the differences with different 
standards may also be helpful and stimulating to the consumers of data. 
Literature on the justification, theory, and methods for standardization 
exists in economics, demography, and health [Shryock and Siege1 1973, 
pp. 418-423, 481-486; Hill 1961, Ch. 17; Yule and Kendall 1950, Ch. 25; 
Mueller et al. 1970, Sec. 7.21. 

Most literature on standardization, like our presentation, uses finite 
subclasses. However, continuous models can also be used for the “handling 
of disturbing variables” [Cochran 1965, Sec. 3; Cochran 1983, Ch. 61. Some 
interesting theoretical results can be facilitated with strong, continuous 
models. However, empirical data may be better handled with finite sub- 
classes. Furthermore, continuous linear regression models need stronger and 
different assumptions than most social research can support. 

4.5C Indexes 

A small change of symbols will simplify this presentation and relate it more 
closely to the standard literature on indexes: Denote the treatment with small 
case and the standard base with capitals. The bases often come either from 
censuses or from models and hence are free of the sampling variation that 
affects the treatment data. Thus: 

treatment j = C w i y i  and BASE r = C W j Y j .  

Set the weights C wi = C W; = 1; if other kinds of weights are actually 
used they should be divided (“normalized”) by C wi or C W;. The indicator 
( i  = I ,  2, . . ., I) can be, and often is, based on multivariate subclassifica- 
tions. But to use separate indicators for each category would be unnecessary 
and confusing. The y; and Yi usually denote subclass means (for treatment 
and base) but we have not used the bars over them. 

Direct standards and indirect standards are both commonly used. In the 

direct standard = J d  = C Wjy i ,  (4.5.Cl) 

the subclass means are standardized by multiplication with base weights. The 
- 

C W;Y; 
indirect standard = Y,,d = y- - Zw;y;----- 

C w; Y; 
(4.5.C2) - - Y 

C wi Y; 

needs to be used when the y;  for the subclasses are not available, would need 
too many computations, or would be too unstable. But the base means Y, 
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and the treatment weights wi are available and stable, as are the overall 
means 

From either standard several indexes can be computed, as they often are 
for economic, demographic, health, and other indicators. They are most 
commonly used for time series of values that are standardized to some base 
period; an average of several periods (years) may provide more stable bases. 
But some indexes may also refer to spatial bases, such as national bases for 
regional or local data. The names for these indexes vary, with frequent use of 
personal names that I shall mostly avoid. Commonly, the indexes are 
multiplied by 100 to express percentlike fluctuations. The 

and r for both treatment and base. 

(4.5.C3) Yi average of relatives = Z Wj-  

seems to be the simplest and most direct use of the ratios yi/  Yi of treatment to 
base, with base sizes Wi of subclasses for weights. But other indexes are 
usually preferred because of its disadvantages: (1) the values of yi  must be 
computed and (2) some yi  may be small and unstable; (3) when the Yi are not 
constants (known or fixed) but random variables, the fluctuations of the 
denominators cause instability, and a technical bias. This resembles the 
problems of “separate ratio estimators” (4.7). 

It would also be possible to use T;(wiyi/Yi), if the (wiyi) were known but 
not the yi (or the wi)  separately. Also the Wi could conceivably be the same 
constant 1/Z. Or the weights could be Woi from a base other than the Y j .  

Yi 

Such problems are avoided in the 

aggregative index = 

Note that in this 
rather than the sum 

(4.iC4) 

“combined ratio estimator” we have a ratio of sums 
of individual ratios in (4.5.C3), hence more stability. 

These are favored in survey sampling and their properties have been much 
studied (4.7). From the last expression note that, compared with (4.5.C3), the 
relative weights Wi are changed to be proportional to Wi Yi ,  which may also 
make substantive sense for many indexes. Still in the choice of the sizes to be 
used for the Wi,  flexibility permits, and economists employ, several kinds of 
aggregative indexes. Conforming to common economic usage, we shall use 
Woi and Yoi to denote data from a base year (0). With ( W, =. Woi) the 

Z Woj y j  - Z Woiyj  - direct standard 
c woiyoi YO base mean ’ 

-____- base standard = - 

(4.5.C5) 
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also known as Laspeyres’ index. With (Wi = wi) the 

- CWiYi - Y (I) = indirect standard 
CWiYOi CWiYOj Y base 

current standard = ___ - ___ 9 

(4.5.C6) 

also known as Paasche’s index, which does not need the separate values of 
y i ,  similar to the indirect standard. With [ Wj = ( Woi + wi)/2] the 

X(WOi + wi)yj = j j  + direct 
c ( woi + W i )  Yi 

average standard = r + c Woi Yi 
(4.5.C7) 

is based on the arithmetic mean of Woj and wi. It equals Y(1 + y/indirect). 

J( Z Woiyi .- Z w i y i )  = $ d i r e c t  x indirect) 
Fisher’s “ideal” index = 

e W0iYOi c WjY0i base2 

= ,/(base x current standard), (4.5.C8) 

and is based on the geometric mean of the base and the current standards, as 
a compromise between them. The simple aggregative index uses equal 
weights Wi = 1/1: 

, (4.5.C9) or ___ simple aggregative index = __ x U i Y i  Z Yi 
c Yoi c ui Yoi 

where ui = number of units in the interval, where these can differ in length. 
Proportions (percentages) comprise a common type of variable, where 

yi = pik = nik/ni, the proportion of the kth category in the ith subclass. 
When the weight in the base is Wi = Ni/N,  the 

When the nik are not available, one may use the 

Nik with pjk = -. (4.5.Cll) c wjpjk Ni 
indirect standard = pk(nd) = ___ pkpk  , 

These would do well enough for single categories (k), but often when 
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the sum over all categories is needed, it turns out that the values for 
pk(nd)  do not sum to 1.00 (or 100 percent), as one would wish. Therefore 
some [Kitagawa 19641 recommend using instead Pk + pk - I:wiP;k = 
n,/n + Ni/N - X(ni/n)(Ni/N).  

Comparisons of indexes are sometimes needed, e.g., for differences of 
periods. A brief look at their structures in their simplest forms may be useful 
for understanding the nature of their sampling variances [Kish 19681. 
Comparison with the base, which has been normalized to unity (or 100 per- 
cent,) r = XcW,Y, = 1, can be written for the average of relatives as 

and for aggregatives as 

The difference of aggregatives for two periods will be I: Wi(y i  - y f ) /  
z WiYi. 

4.5D 

Separation into components of differences between means has been an 
empirical tool especially in demographic research since three publications 
[Kitagawa 1955, 1964; Althauser and Wigler 19721. These papers, and others 
since then, give more detailed descriptions and examples of applications. 
Whereas standardization aims chiefly at removing disturbing variables, 
component analysis is a research tool for separating and evaluating two or 
more determinants (predictors) of the predictand variables y .  The concept 
and algebra are similar to those of (4.5B), but the aims here differ somewhat 
and include additional development. The notation is somewhat simpler here 
than in either (4.5B) or in Kitagawa’s papers. 

Components of the Differences ( y  - y’) and ( Y  - Y’)  

3 - r = I: wiy; - I: w; Y; = I: w;(yi - Yi) + I : Y i ( W i  - Wi) 

= I: Wi(Yi - Y;)  + I: Yi(Wi - Wi) + z ( y i  - Yi)(Wi - Y;)  

= I: WidYi + I: YidWi + ZdYidWi. (4.5.Dl) 

The first line has only two terms but is less meaningful because of changes 
in two sources of multipliers. The three terms on the following lines are the 
components, respectively, for rates (or variables), for weights (or compo- 
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sition), and for interaction. Kitagawa's exposition for rates is devoted to 
proportions, but extensions to other variables can be directly made. The Wi 
and Y; refer to standard bases, and for differences between two standardized 
differences we have: 

(3  - 3') = C W;(dy;  - dyi) + C Yj(dWj - dwj)  + C(dy;dw;  - dyj d W J )  

= Cw;(y i  - y j )  + C y ; ( w ;  - w;) - C(Wi - w:)(yi  - y j ) .  
(4.5. D2) 

We note (as in Section 4.5B) that C ( y ;  - y j ) (wj  - w : )  = I: w j ( y j  - y : )  
- C wi(y j  - yi) ,  so that the interaction term equals the effect of different 
weights on the difference of rates, which is often relatively small-though not 
always. The interaction also disappears with the mean of the two multipliers: 

j - j '  = CO.5(wi + ~ j ) ( y i  - yj) + C 0 . 5 ( ~ ;  + Y;)(W; - wj) .  

Furthermore, the second term for the difference in weights can be decom- 
posed into components for the diverse sources of the effects I and J: 

ZCW..  .. - Z Z w ! .  !. 
r/  y ,  0, 

= CCO.S(w, + w;)(y,  - y o )  difference of rates 

+ CiO.5(wj + w j )  Ci0.5(y i ,  + yk) (; - - ~ ;;) Icomponent 

+ CiO.5(wj + wj)  Zj0 .5(y ,  + yb) ("wi -3 - 4 :.) Jcomponent 

+ CiCj0.5(yi ,  + ye)[(-  W ! . W .  - 2) w..w! + (- w; wj wijwj )] 
Wf W i  W j  wi 

IJ component. 
(4.5.D3) 

4.6 COVARIANCES AND RESIDUALS FROM LINEAR 
REGRESSIONS; CATEGORICAL DATA ANALYSES 

4.6A Covariance Analysis 

Covariance analysis denotes a method for removing the effects of disturbing 
variable(s) x from differences (yo - yb)  by computing the covariance of x 
with y and adjusting for its regression effects. (I use D for disturbing variables 
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elsewhere, but x fits more of the references.) The method can be somewhat 
more efficient than standardization with few subclasses; but we shall see later 
that three, four, or five subclasses can perform quite well. Covariance 
analysis is also more clearly and elegantly based on explict models; and its 
theory is prominent in many statistics books [Anderson and Bancroft 1952, 
Ch. 21; Cochran and Cox 1950, 3.8; Kirk 1968, Ch. 12; Snedecor and 
Cochran 1967, Ch. 41. I quote below from “Analysis of covariance; its nature 
and uses” [Cochran 19571 in the issue of Eiometrics devoted to articles on 
covariance. 

The method, however, is not applied often in empirical and social research 
because of the following severe limitations. 

1. Its linear model postulates that the effects of treatment, blocking, and 
regression be additive. 

2. The model is based on continuous data; this is severe obstacle for most 
social research, which is based on categorical data with nominal or 
ordinal scales. Several new methods for analyzing categorical data have 
been developed recently to overcome these limitations (4.6C). 

3. The residuals eij are postulated to have zero means and normal, 
independent, and identical distributions (the same variances). These 
assumptions are needed for tests of significance in classical presenta- 
tions, but some robust methods developed in survey sampling for 
errors may be applied here also (7.1). 

4. The simple, common format is designed for linear regression on a single 
disturbing variable, but we may desire to remove simultaneously the 
effects of several disturbing variables. For such multiple regressions 
more complex methods have been developed. 

5 .  Analysis and computations can be fairly complex, especially for the 
multivariate case, and modern computers are making these more 
feasible. However, computing packages can also distance researchers 
from the meaning of the final statistical output and from the ends of 
statistical inference. 

6. Interpretation of the results of covariance analyses can become subtle 
and doubtful-as controversies in the literature show [e.g., Cochran 
19691. 

7. The usual classical presentation of covariance analysis is framed in 
terms of tests of significance, but the aims of social and other research 
are more often the magnitudes of values and relations ( 1  . S ) .  

Most of these limitations can be avoided-partly or entirely, readily or 
carefully-with methods based on subclasses for controlling disturbing 
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variables. Nevertheless, a brief look at the covariance model is worthwhile, 
both because it can be used occasionally and because its model is broadly 
instructive. 

The typical mathematical model appropriate to the analysis of covariance . . . 
from the viewpoint of covariance . . . may be rewritten as 

y ,  - p(x, - x..) = p + ri + f i  + eii. (4.6.1) 

Here y, is the yield or response, while xii is an auxiliary variate, sometimes 
called the concomitant variate or covuriute, on which yii has a linear regression 
with regression coefficient p. The constants, p,  ri and pi are the true mean and 
the effects of the ith treatment and j t h  replication, respectively. The residuals eii 
are random variates, assumed in standard theory to be normally and indepen- 
dently distributed with mean zero and common variance. . . . The symbols x .  . , 
y. .  denote overall means.. . . The quantities y, - p(x, - x.  .) are the 
deviations of y, from its linear regression on xu. or the values yii after 
adjustment for this linear regression. In this setting, ri may be regarded as the 
true effect of the ith treatment on yo. after adjustment for the linear regression 
on the covariate x,. Thus the technique enables us to remove that part of an 
observed treatment effect which can be attributed to a linear association with 
the xo . . . the analysis of covariance extends the study of regression relation- 
ships to data of complex structure in which the nature of the regression is at 
first obscured by structural effects like 7; and pi. [Cochran 19571 

Cochran also lists four other uses of covariance analysis: to increase 
precision in randomized experiments, to throw light on the nature of 
treatment effects, to  fit regressions in multiple classifications, and to analyze 
data when some observations are missing. Here we are interested in 
covariance chiefly to remove the biasing effects of disturbing variables in 
observational studies, but it also increases their precision as it does in 
randomized experiments. The difference (y, - yb) of means between two 
groups is 

The unadjusted difference thus includes not only the difference (ro - rb) of 
true means and the error term ea - eb, but also the bias term P(x, - xb). 
But this term is removed by the covariance adjustment. However, 

we can never be sure that bias may not be present from some disturbing 
variable that was overlooked. In randomized experiments, the effects of this 
variable are distributed among the groups by the randomization in a way that is 
taken into account in the standard tests of significance. There is no such 
safeguard in the absence of randomization. [Cochran 19571 
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TABLE 4.6.1. Proportion of Constant Bias Removed with Different Numbers of 
Subclasses 

Numbers of subclasses 1 2 3 4 5 6 co 
Proportion of bias removed 0 .64 .SO .86 .90 .92 1.00 

For all methods of controlling disturbing variables, questions arise about 
their adequacy in the face of errors of measurement. One problem concerns 
the loss of control due to grouping into few subclasses an underlying variable 
that is continuous, or is approximately continuous with many potential 
classes. This common problem can arise because either the variable gets 
measured that way or it is reduced later to a few subclasses. This problem 
receives its best treatment from Cochran [1968] for a wide range of 
distributions of the disturbing variable. His results have broad meaning, with 
reassuring uniformity of consequences for different distributions of the 
disturbing variable, and Table 4.6.1 presents a basic summary. It shows that, 
e.g., five control classes will reduce the relative bias of a continuous 
disturbing variable by a factor of 0.90; for example, from 8 percent to 
0.8 percent. 

Further, Cochran also deals with random error, which introduces mis- 
classification into the subclasses. Such misclassifications reduce the preceding 
ratio of effectiveness by the factor (1  + h ) ,  where h is the additional variance 
due to random errors of classification; this is computed as a ratio to the 
variance caused by an errorless disturbing variable in the predictor. 

Table 4.6.2 presents an example of the use of controls to remove the 
effects of a single disturbing variable, age. At first glance the unadjusted 
cigarette smokers seem to do as well as nonsmokers, whereas cigar and pipe 
smokers appear to live more dangerously. The differences in mean ages, 
though small, raises doubts because age is strongly related to death rates and 
also to cigarette, pipe and cigar smoking. Adjusting for age subclasses (of 
smokers to nonsmokers) brings out step by step a corrected relationship of 
smoking habits to death rates: Cigarettes are deadly; cigars and pipes are not. 
Nonsmokers’ rates remain at 13.5 because they serve as the base to which the 
others are adjusted. We may guess that 1 1 subclasses are almost as good as a 
continuous adjustment, and 5 subclasses would be close to them. Canadian 
and British data lead to similar conclusions [Cochran 19681. 

Finally, this example also serves to make another point, not strange to 
empirical researchers, about controls for disturbing variables. Commonly, 
such controls serve to probe the validity of differences found in the 
predictand variables, and imposing controls often reduces those differences. 
In this case, however, nonsmokers and cigarette smokers show no differences 
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TABLE 4.6.2. Adjusted Death Rates per 1000 U S .  Adult Males, Using 2, 3, and 11 
Subclasses Compared to Unadjusted (1) Rates” 

Number of Subclasses 
Mean 
Age 1: Unadjusted 2 3 1 1  

Nonsmo kers 57.0 13.5 13.5 13.5 13.5 

Cigars and pipes 59.7 17.4 14.9 14.2 13.7 
Cigarettes only 53.2 13.5 16.4 17.7 21.2 

uFrom Cochran 1968. 

at first, but imposing proper controls uncovers the differences, which were 
hidden by the disturbing variable of age subclasses with contradicting death 
rates. After adjusting for the bias of their youth, cigarette smokers are shown 
to be in mortal danger. 

4.6B Residuals 

We may begin with a regression model y j  = X b x + e j ,  where C, bhxp = 
h, + b , x ,  + b,x, + . . .  expresses a multivariate linear regression model, 
and el is the error term for thejth observation yj.  This differs from (4.6.1): it 
does not include a population mean Ti and is cast in a model for regression 
rather than for classical analysis of variance. The principal difference 
concerns the role for ej, which in (4.6. I )  was merely an error term assumed to 
be normal with zero mean, independently and identically distributed, and 
hopefully small. Here ej = y j  - 9, becomes the object of attention, where 
j j  = C b p x p ;  and 

p 4 

the residuals ej are the differences between what is actually observed, and what 
is predicted by the regression equation-that is, the amount which the 
regression equation has not been able to explain.. . . We now give ways of 
examining the residuals in order to check the model. These are graphical, are 
easy to do, and are usually very revealing when the assumptions are violated. 
The principal ways of plotting the residuals are 1. Overall; 2. In time sequence, 
if the order is known; 3. Against the fitted values; 4. Against the independent 
variables; 5. In any way that is sensible for the particular problem under 
consideration. [Draper and Smith 1966, Ch. 31 

These examinations of residuals (or deviations) by statisticians [e.g., 
Anscombe and Tukey 1963; Neter and Wasserman 1974, Secs. 4.2, 13.5, 
15.41 begin with the aim “to check the model.” If the linear regression 
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represents the predictor variables, the residuals may represent the disturbing 
variables to be examined and analyzed. It may begin with a graphical, optical 
examination, but also continue with other methods such as inclusion in the 
regression model, or analysis of subclasses and/or of variances, etc. 

However, with a drastic reversal of roles (we suggest), the linear regression 
can represent the disturbing variables, as with covariance methods. But now 
instead of trying to explain and relate the variable y, to other variables, the 
analyses proceed with the residual e, = y, - 9,. Analysts of those relations 
combine substantive and statistical aspects and can include analyses of 
subclasses, of variances, of regressions, etc. 

Further extensions of residual analyses are also possible. 

1.  Other models of regression may be used, such as nonlinear and 

2. Other theoretical models may be used instead of regressions. 
3. Instead of differences, the relations of actual to predicted may be 

categorical data analysis (4.6C). 

represented by ratios or other functions. 

The last two points are well represented by an interesting example from 
Coleman [ 1964, Ch. 151: 

. . . in considering a given complex social phenomenon, certain aspects of it are 
explainable by “sociologically trivial” assumptions, or by matters irrelevant to 
the substantive matters under investigation . . . the approach suggested here is 
to make some simple and reasonable null assumptions, and then to use the 
deviations from predictions consequent upon the assumptions as a measure of 
various matters, as, for example, the “social distance” between two groups. 

Then in his example of travel and communication between pairs of cities 

. . . under these null or “ideal” conditions, the rates of interaction between two 
areas which contain n ,  and n,  persons and which are d,, distance apart will be 
proportional to n,n,/d, ,  . . , . This factor, n,n, /d , , ,  is the same one which has 
been proposed as “the law of social gravity.” . . . In contrast, what is proposed 
here is that this factor be used simply as a base line, or standardization, . . . 

From data on  numbers x, , of airline trips between pairs of cities, travel 
rates are computed, standardized both for populations n, and n, and for 
distances d , ,  between them: then w I 2  = x,,d,,/n,n,. The mean of these 
for N ( N  - 1)  pairs between N cities is W = X X w , , / N ( N  - 1). Then 
Zl2  = w I 2 / W  shows deviations above and below 1 for the average. A 
triangular matrix of these N ( N  - 1)/2 pairs shows some regularities, most 
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due probably to some cities (e.g., Washington) showing generally larger 
values than 1 and others (e.g., Philadelphia) showing generally less than 1. 
These average values may be factored out in V , ,  = Z , , / Z I Z z .  These values 
exhibit individual relative deviations specific to each pair. 

4.6C Nonlinear Regressions, Dummy Variables, MCA, Categorical Data 
Analysis 

This will have to be a brief, superficial view of a broad and varied field 
of statistical analysis, and further restricted to the use of regression for 
controlling disturbing variables, rather than for principal analysis. First, let 
us look at several kinds of departures from linear continuous models to see 
whether they can be treated with the covariance or the residuals of (4.6A) or 
(4.6B) or left for the subclass treatments of (4.1) to (4 .9 ,  or subjected to one 
of the methods described here. 

1. Monotonic relations, whether continuous or ordinal, can sometimes be 
handled well enough by linear regression. Transformations, with a 
mathematical model guided by substantive theory, may give better 
results-but seldom with small samples subject to their large measure- 
ment errors and to the small explanatory powers of the usual data of 
social research. Results from several transformations may be compared 
with each other and with the “safer” results of simple subclass analysis. 

2 .  Curvilinear, nonmonotonic, continuous relations may be poorly esti- 
mated by linear regressions. Either transformations or the higher order 
terms usually recommended for “curvilinear” regressions may be 
better, with models skillfully guided by theory. 

3. Categorical predictors, with predictands either continuous or dicho- 
tomous, are often treated with “dummy variable” regressions or MCA 
programs. 

4. Categorical data analysis can be applied to all data that are either 
intrinsically categorical or deliberately categorized for analysis. 

Dummy variable analysis has mathematical expressions that are similar to 
the regressions equation: 

y i  = Zbixi  + e, = b, + b , x ,  + b,xz + b3x3 + b4x4 + . . . + ej.  
(4.6.3) 

This additive expression may have many terms, which fast computers can 
handle, and modern literature has programs and descriptions for them 
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[Draper and Smith 1966, Sec. 5.3; Suits 19571. For example, x1 may represent 
the two categories of a dichotomy, with x1 = 1 for the first category and 
x1 = 0 for the second. A trichotomy could be represented by x2 and x3 with 
( 1 ,  0), (0, 1) and (0, 0) for the three categories. A polytomy with k categories 
needs (k - I )  terms in the equation. A continuous (or monotonic) variable 
may be represented by x4. The predicted value is j j  = C b i x i  and the 
literature discusses the meaning of the regression coefficients bi. But here we 
regard it  as a method for removing disturbing variables in order to examine 
the adjusted values ej = y j  - j j  = y j  - C bixi and to search for relations 
among other explanatory variables. 

Multiple classlJcation analysis (MCA) is a computer program for the 
analysis of dummy variables for multiple regression with categorical predic- 
tors [Andrews et al. 19731. MCA 

is a technique for examining the interrelationships between several predictor 
variables and dependent variables within the context of an additive model. 
Unlike simpler forms of other multivariate methods, the technique can handle 
predictors with no better than nominal measurement, and interrelationships of 
any form among predictors or between a predictor and the dependent variable. 
The dependent variable, however, should be an intervally scaled (or a 
numerical) variable without extreme skewness, or a dichotomous variable with 
two frequencies which are not extremely unequal. The statistics printed by the 
program show how each predictor relates to the dependent variable, both 
before and after adjusting for the effects of other predictors, and how all the 
predictors considered together relate to the dependent variable. 

(See also descriptions in Morgan et al. 1962, App. E, and in Duncan and 
Blau 1967, pp. 128-140.) MCA has been applied often to data adjusted for 
disturbing variables. 

In Table 4.6.3 the deviations in the last column have been adjusted for 
stage in life cycle (.39), income (.38), physical condition (.16), region (.06), 
state old age assistance (.06), color (.04), and sex (.Ol); beta coefficients are 
given in parentheses. Note that for under age 25 the proportion living with 
relatives drops from .17 + .44 = .61 to  .17 + .15 = .32 after adjustment. 
Also for the old (75 and over) the proportion drops from 29 percent to 
16 percent after adjustment. Thus we see drastic changes in the relationship 
due to adjustments, especially for life cycle and income. This book is full of 
such tables, though most of the results of adjustments are not as dramatic as 
this example for age. For example, for those with less than $1000 income, the 
proportion living at home goes from 70 to 52 percent after adjustment. 

Categorical data analysis has enjoyed remarkable development recently in 
various forms and especially with loglinear models. Its most humble and 
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TABLE 4.6.3. Living in Relatives’ Home: Deviations for Age of Heads from Grand 
Mean of .17’ 

Age of Number of Percent of Unadjusted Adjusted 
Heads Adult Units Adult Units Deviationsb Deviationsb 

Under 25 434 12.5 .44 .15 
25-34 63 1 18.6 - .03 .03 
35-44 694 20.6 -.11 - .03 
45-54 624 17.9 - .11  - .03 
55-64 517 14.5 - .09 - .05 
65-74 317 10.2 - .01 - .04 
75 or older 179 5.7 .12 - .01 

“From Morgan et al. 1962, Table 14.6. 
bDeviations from grand mean of ,17. 

most common forms are the well-known 2 x 2 tables for double dicho- 
tomies. However, with modern computers multidimensional polytomies with 
count data in p x q x r x s cells can be handled. The large literature, 
unfortunately, is still mostly devoted to tests of significance, but methods for 
estimates are also emerging. However, I know of no applications for 
controlling disturbing variables to yield adjusted explanatory variables. But 
perhaps these will also emerge in the future. [Agresti 19841. 

4.7 RATIO ESTIMATES 

In this section 1 transgress (reluctantly) my confinement to design problems 
and venture briefly into a special area of estimation. This venture seems 
advisable because of the book’s many references to ratio estimates and 
because of their fundamental position in survey sampling. This topic is well 
covered and developed at length and in breadth in all textbooks on survey 
sampling [Hansen, Hurwitz, and Madow 1953, 4.16-4.21; Cochran 1977, 
Ch. 6; Kish 1965, Ch. 61. However, I felt it advisable to include this brief 
outline for those not familiar with this topic from sampling texts. In complex 
samples means have the form r = y / x  because the sample size is not a fixed n 
but a variable x, subject to several sources of variation. The topic also 
belongs to this chapter on controls because the ratio mean r is also used 
often, as discussed later, for adjusted means like Kr and like I; Whrh, where K 
and W,, are factors known from outside sources. 
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It is best to plunge dirmtly into the stratified clustered selections that 
characterize survey sampling. Primary selections are made separately from 
each of H strata (h = 1, 2, . . ., H ) ,  and the number of these primary 
selections from the hth stratum is denoted as ah(w = 1, 2, . . ., a),). A 
common and useful design uses paired selections of two units from each 
stratum when ah = 2 and ( a  = 1,2). For the crth primary selection the sums 
for variables Y and X may be denoted as Yha and xha and the ratio mean as: 

(4.7.1) 

- - Ch bhl + Y h z )  for paired selections (4.7.1 ‘) 
x h  (xhl + xh2)’ 

-__  - ‘jY’ 
cj xj ’ the mean for all cases. 

The importance and generality of this ratio mean 
several remarks. 

(4.7.2) 

may be clarified with 

1. This ratio mean is the most common and general statistic based on 
complex (clustered or multistage) samples in actual survey research. 

2. The last form (4.7.2) shows that this represents the simple mean of 
all cases without regard to strata and selection units. But using 
7 = Zyj/rzf (with fixed size nf )  would disregard the forms that the 
variance computations must use. The stratified clustered form (4.7.1) 
displays the terms used in variance computations. 

3. It is most useful that the terms Y h a  and Xha are adequate for variance 
computations with the primary selections (or ultimate clusters) model 
regardless of other components for later stages and strata for selections 
(7.1 .E). 

4. Those terms are the sums for primary selections of the Y and X 
variables for individuals cases: Yha = X j  yhq and X h a  = Zj xhw. But the 
denominator is most often simply a case count so that x = n, 
x / , ~  = nha, and X h w  = 1 ,  a count variable. For weighted means 
Xha = nha = Zj Whaj and Yha = Zj W h a j Y h q .  Also r denotes a propor- 
tion for a dichotomy when Yhq = 0 or 1, among the Xha case counts. 

5 .  The xha and the x = zh Ca Xha are variable even when they denote case 
counts, because sample sizes in the sampling units are typically not 
fixed, but variable. In addition to ignorance of cluster sizes, there are 
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also variations due to nonresponses. But the greatest variations 
typically occur for subclasses that are crossclasses. Nevertheless, the 
ratio mean can deal effectively with all those sources of variation. 

6 .  However, it is clear that, despite those variations, the denominator x 
should not be allowed to approach zero because the ratio y /x  would 
become unstable. It is good practice, based on theory, that the 
coefficient of variation of x, C,, be checked to be less than 0.1 or 0.2. 
This criterion is even more needed for the justification and the stability 
of the computed variance estimates. A computing formula for C, is 
given below. 

7. Paired selections, with ah = 2 in all strata (though this is not 
necessary), are convenient for computing variances. They also allow 
the utmost stratification for a fixed number ( 2 H )  of primary selections, 
while still yielding two units for variance computations from each 
stratum. The variance of the ratio mean r = y/x = xyh/zxh may be 
expressed generally and simply as: 

(4.7.3) 
1 

X2 
var(r) N -[var(y) + r2 var(x) - 2r cov(y, x)] 

(4.7.4) 

The first expression (4.7.3) is quite general for the ratio of two random 
variables. It is written here in sampling terms, and each of the three sampling 
variances estimates a corresponding population variance (Var), e.g., 
E[var(x)] = Var(x), the variance of the sample sum x. The derivation 
depends on a Taylor expansion (or delta method or linearization) for the 
ratio as function of its simple components, the sample sums y and x. 

Expression (4.7.3) is an approximation that has been shown to be quite 
good for large and moderate-sized samples. A convenient and adequate 
criterion is a small coefficient of variation for x, C, < 0.1 or 0.2, again. 

The second expression (4.7.4) takes us toward convenient computing 
forms when each of x = zhxh and y = Chyh are sums of variables 
independently selected from the strata. 

The third expression (4.7.5) makes for a simplified form using terms 
zltz = yha - rxha, the deviations of the yhL2 values from values “expected” 
on basis of the Xha values of the same primary selections. These forms are 
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brief, expressive, and easier to check and use for hand computations. Their 
simplicity becomes even more advantageous for complex functions of r, 
discussed below. 

The computations can be done directly from either (1) the ah pairs of yha 
and xIla from each stratum in (4.7.4), or (2) the all forms of zha = Yha - rxha 
precomputed for (4.7.5). For paired selections ah = 2,  hence the alternate 
simple forms on the right in (4.7.6) may be used. Note also that xh = C, xhu, 
yh = cayha, and zh = ZaZha.  

(4.7.7) 

Because these forms are complex, mistakes can be made easily and com- 
puting deftZ = var(r)/(s’/n) serves usually as a good check for mistakes. 
Compute sz = [ x C j y j  - y z ] / x z  when y = Cij? and x = C j x j  is a case 
count. If these variables are weighted, then sz = [(Cjw,xj)Xjw,yj - 
(C W ~ J ? ) ~ ] / ( C  W ~ X , ) ~  and n is an unweighted case count; deftZ includes the 
effects of weighting as well as all complexities of clustering and stratification. 
Often r = p is a proportion, and sz = p(I  - p ) ,  disregarding the factor 
n/(n - 1). 

For the coefficient of variation of x ,  to check against both bias in r and 
instability in var(r), use c, = [ d m ] / x  < 0.1 or 0.2. 

The many uses of ratio estimators may be discussed under three headings. 
First, these “combined” ratio means r = y / x  may be used with some 
adjustment factor K to yield more accurate estimators Kr. The factor K may 
be a “raising” or “expansion” factor to estimate an aggregate, or an 
adjustment factor for a better mean. These factors may reduce biases of 
measurement and especially of nonresponse or undercoverage and these may 
be of great practical utility. They may also yield reductions of sampling 
variances, and those are more easily displayed in formulas. Incidentally, the 
word “estimator” is used in statistics to call attention to expected or average 
performances of statistics like Kr, rather than to the actual result of a specific 
estimate in a single sample, whose result is subject to variation and to 
unknown errors. The adjustment jucior K may take several specific ,forms. 
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1. The estimator Nr = N(y/n) when the population size N is known from 
outside sources can be a much more accurate estimator than Fy = y,’fbased 
on the sampling fraction f, when y and n are subject to similar biases of 
undercoverage and to sampling errors. Its variance 

N2[var(y) + r2 var(n) - 2r cov(y, n)] 
var(Nr) = (4.7.8) 

n2 

can be much less, with high cov(y, n), than var(Fy) = F2 var(y), and the 
bias for (Nr) may also be much less than for (Fy).  

For the same reason r would be a more accurate estimator of the mean 
Y = Y / N  than F’/N = y/Nf would be. This is due to the variable size on 
which the sample y is based in complex samples. The situation would be 
entirely different in samples based on fixed sample sizes nf 

2. These advantages may hold even when fl is an estimate, also subject to 
error, so that for the product fir = fl(y/n): 

var(fir) = f l 2  var(r) + r2 var(fi) + 2Rr cov(fl, r). (4.7.9) 

If the fi is based on a large sample, the last two terms may be negligible, 
compared to f i 2  var(r). If the bias of fl is small, this may be a better 
estimator than Fy. This (4.7.9) is the variance for a product of two random 
variables (4.7.17). 

3. In the ratio r = y /x ,  the x is sometimes some other positive variable, 
rather than a case count. Then, if the value Xis known from outside sources, 
we may have the estimator X ( y / x )  similar to case 1 above. With a stable 
(large sample) value 2 we may have f ( y / x )  similar to case 2 above. 
Furthermore, we may also consider an adjustment 2 for the mean (y lx )  to 
produce a better mean. For example (y/x) may be a “calibration”, from a 
quality check (evaluation) with better measurements, on a subsample from 
the larger sample that produced the mean 3. Conversely, we may regard y / x  
as our main product and 2 the result of a first phase of screening from a 
larger sample, used for reducing the variance: 

var(yr) = X2 var(r) + r2 var(2) + 2Xr cov(2, r). (4.7.10) 

If the two samples are independent, the last term vanishes. If the 2 is known 
without error (from a census), only the first term remains. 

Second, the “combined” ratio estimator, r = cyh/cxh is often compared 
with several alternative estimators. 

4. One of these alternatives is the “separate” ratio estimator 
r,,, = C whrh = X WhyhlXh. The “combined” r uses the ratio of two sums, 
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each based on the entire sample, whereas the “separate” r,. uses the weighted 
sums of separate ratios rb within each stratum. The Wj1 are weights based on 
“knowledge” beyond the sample data, and the rh within strata may be 
unstable if the xh are small. If the W, are accurate (unbiased and precise), the 
separate ratio estimator may be used because it has a lower variance, 

var(yw) = var(C WIIrh) = Xlfl[var(y,,) wl: + ri var(x,) - 2ri c~v(yhx~~)] ,  
Y h  (4.7.11) 

than the combined estimator. This lower variance is noted in the literature 
and it also resembles “poststratification” estimators [Cochran 1977, 6.10, 
5A.91. It is used, I believe, more to correct for biases of nonresponse and 
undercoverage [USCB 1978, Ch. 51. Its use in small samples is limited, 
because if many strata are needed for effective multivariate control, the ratios 
rl, (or some of them) can be unstable. 

5. We may barely compare here two interesting ulternutives that are 
described in the literature [Hansen, Hurwitz 1953, 11.2; Kish 1965, 13.2B; 
Cochran 1977, Ch. 71. The regression mean, 

(4.7.12) - 
yreg = j + h ( X  - X) = j - h i  + bX, 

represents a correction of the survey mean 7 with the factor h ( X  - X) where 
h is the coefficient of regression of the survey variable Y on the (control) 
“ancillary” variable X ,  whose known population mean Xand sample mean X 
can be used for the correction. This may be viewed as a special case of the 
more general difference mean: 

j d i a  = j + k ( X  - X) - k i  + k X ,  (4.7.13) 

which uses some constant k for the adjustment for a control variable X ;  
whereas the regression mean uses the regression coefficient h. For this 
comparison the combined ratio mean may also be viewed as a special case of 
the difference mean with k = r = y/X: 

- 
yratlo = J + ( J / X ) ( X  - ,F) = j - j + ( y / X ) X .  (4.7.14) 

Third, the forms used for the ratio means are also useful for related more 

6. Differences between ratio means are used constantly for comparing 
complex statistics (7. I).  

means (percentages) from complex surveys: 
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var(r - r’) = var(r) + var(r’) - 2 cov(r, r’) 

L 
dzhdz;. (4.7.15) 

xx 

The covariances come from using the same sampling units for both sample 
means; for independent means r and r’ the covariance term vanishes. Using 
the dx and dy forms would result in four variance plus six covariance terms, 
instead of the three above. 

7.  The ratio of two ratio means (i.e., “double ratios”) may be useful, e.g., 
lung cancer rates for smokers over nonsmokers (7.2A). Its variance resembles 
the variance for r (4.7.3): 

var() = $[var(r) + (;y var(r‘) - 2 cov(r, r’) . (4.7.16) (3 1 
Many more complex indexes, e.g., Xg(rg/ri), can also be constructed and 
utilized [Kish 1965, Sec. 12.1 1; also (6.6C) and (6.6D)I. 

8. The product of random variables has been used above and the variance 
for (yx) is 

var(yx) = xz var(y) + y 2  var(x) + 2yx cov(y, x). (4.7.17) 

9. “Relvariances,” i.e., relative variances, the squares of the coefficients of 
variation, allow for very symmetrical comparisons, easy to remember: 

var(y/x) - var(y) var(x) 2 cov(y, x) ___-__ + ~- - 
(YlX)’ Y2 X2 YX 

var(yx) - var(y) var(x) 2 cov(y, x) +--+ ___-- 
(YX)* Y 2  XZ, YX 

var(r/r’) - var(r) var(r’) 2 cov(r, r’) 
(r/r‘)2 r2 r‘ 2 rr’ (4.7.18) 



CHAPTER 5 

Samples and Censuses 
The government are very keen on amassing statistics. . . . But you must never 
forget that every one of thesejgures comes in the first instance from the village 
watchman, who puts down what he damn pleases. Sir Joseph Stamp. 

5.1 CENSUSES AND RESEARCHERS 

We have explored the relative advantages of survey sampling compared with 
those of experiments and of controlled observations (Ch. 1). Later, survey 
sampling was compared with the complete census of a single local site or a 
few of them (3.1). Now we shall compare and relate sample surveys to 
complete censuses of national and of other large populations. These 
three different comparisons and relationships all have specific practical 
contents, hence their treatments have been in entirely separate contexts 
(Fig. 1.3. I ) .  

For this present comparison, consider primarily complete decennial 
censuses of the national population; but large-scale sample censuses, say 
I0 percent, would yield similar comparisons and relations. Also, censuses of 
large states or cities would yield similar comparisons. Furthermore, though 
we focus on population and housing censuses, we may also consider censuses 
of farms, business, industry, schools. 

Data from registers of the population and from other sources of 
administrative records are also alternatives to censuses and to samples; and 
all three can be combined with them for joint uses (5.3F). However, we 
cannot deal with them adequately here because they are so specific and 
diverse, and instead refer to other sources [United Nations 1962, NCHS 
1980, US Dept Commerce 19801. 

I must raise also the question of motivation. In addition to statisticians 
and technicians in the census bureaus and in national statistical offices, why 

138 
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should researchers outside those offices concern themselves with these 
comparisons and relations? Let me list several reasons to motivate the 
interest of social scientists in both the value and the shortcomings of 
censuses. 

1. Researchers often use the results of censuses and they should be aware 
of the limitations, errors, and problems of censuses. Many use only the 
published results, but some also use census data in more direct forms, 
especially since the existence of public-use tapes of samples from censuses. 
They may have to face the choice of using or sometimes even of conducting 
sample surveys rather than accepting census data that are obsolescent; or 
seemingly inaccurate; or restricted in depth, richness, and relevance. 

2. Researchers may be able to influence the content, form, and accuracy of 
the census schedules and procedures. To perform that role they should 
appreciate the problems and limitations as well as the advantages of 
censuses. Their input may seem even more relevant for the sample supple- 
ments, which have become common in recent years, than for the core 
questions of the complete (100 percent) censuses. 

3. Researchers may be able to improve the schedules and procedures for 
censuses and for the samples conducted to measure the errors of censuses, to 
evaluate and to improve them. The methodological skills, experience, and 
theories of social researchers can be used by the statistical offices if their 
advice is informed of the practical problems of census taking. 

4. Researchers may consider using or conducting a complete census of a 
restrictedsite as an alternative to a national sample survey (3. I). Several dimen- 
sions and criteria are involved in this decision, as well as in the next one. 

5. Researchers may consider taking complete censuses of organizations, 
schools, and other institutions. Such large-scale effort may benefit from 
advice and help from census takers acquainted with the problems and 
opportunities of large-scale collections of data. The advantages in greater 
detail and in completeness of a census of a smaller population may be 
contrasted with the greater breadth and depth possible in a sample survey of 
a larger population. 

6. Censuses have developed a variety of uses for samples to supplement or 
evaluate or improve censuses (5.3). Researchers should explore the possible 
uses of these methods to improve their own sample surveys also. Some of 
these methods may be too expensive for realistic use with small samples, but 
others may be more feasible and justifiable, especially for larger and more 
expensive surveys. 

For this chapter I have made heavy use of two earlier papers [Kish 1979; 
Kish and Verma 19831. These contain references to other papers on censuses 
with deeper content than is possible here and are intended for readers who 
need to work with methods that are only briefly discussed here. 
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Finally, I would add here a brief remark about the high costs of decennial 
censuses, which sometimes get adverse reactions from the press and the 
public. The 1980 censuses of the United States cost about one billion dollars. 
But that comes to only $4 per capita for the population of 250 million, which 
amounts to about one-half hour of work at median wages decennially. 
Interestingly, that half hour at median wages seems to hold fairly well, I 
believe, for very diverse decennial censuses of other nations also. We should 
add to those open costs the hidden cost of the time spent by a population of 
respondents. But then we should also subtract from those costs the benefits 
of the nation’s population partaking in the “ceremony” of assessing its 
individual and its collective statuses. 

5.2 SAMPLES COMPARED TO CENSUSES 

In comparing sample surveys to complete censuses we shall note their 
relative advantages and weaknesses: each seems stronger where the other is 
weaker. Thus we may view them in competition with each other, but also 
emphasize their complementary natures. Then we note how they can be used 
to aid each other and also used jointly in postcensal estimates for small areas 
(5.3F). 

These comparisons concern covering the same large national population 
either with a complete census or with a much smaller, hence also less 
expensive sample. Different dimensions are involved in comparing for similar 
costs a census of one restricted community (or a few) with a national sample 
(3.1) and in comparing a longitudinal study restricted in space with a one- 
time cross section of a national population (6.1). The comparisons also have 
different dimensions for restricted populations, e.g., the national population 
of a professional society or the total population of a small city-state or small 
island-nation. The contrast between samples and complete censuses is more 
striking and decisive generally for large, national populations, and that is our 
central concern here. 

The United States has almost 100 million households, and a sampling rate 
of 1 / I  000 would yield a sample of 100,000, and even a rate of ljlO0,OOO yields 
n = 1000. Censuses are entirely different in the scale of operations involved, 
and in the consequent differences in methodology and the practical con- 
ditions of data collection. Complete enumeration of the entire population 
requires mobilization of financial and human resources on a large scale, 
which cannot be sustained for a prolonged period or repeated frequently. 
The need to deploy a large-hence a less well trained and less closely 
supervised-field force means that the type of information which is appro- 
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priately collected in a census, while extensive in coverage, has to be relatively 
simple in content. Simplicity is also necessary to keep the volume of data to 
be processed manageable. Complete censuses are nevertheless relatively 
expensive and slow, and even with today’s modern, efficient procedures it can 
take four years to get most of the census data into the hands of users. These 
are the basic reasons for not taking censuses more often, or with greater 
depth and richness of data. 

Therefore the primary objective of a census is typically to obtain a detailed 
and complete picture of the number (size) and basic structural and related 
characteristics of the population, and to provide as much detail as possible 
for small domains and especially for local areas. For example, the population 
census provides information on the size, age-sex composition, geographic 
distribution, and most basic demographic and socioeconomic characteristics 
of the population. 

By contrast, inquiries confined to samples of the population can, by 
virtue of their smaller sizes, be designed to obtain a wide variety of complete 
data for studies of interrelationships and of changes. Such data are not 
gathered in complete censuses: attempts to do so would result in very high 
costs and, even more important, in low quality. (This is illustrated by 
misguided attempts in some countries to collect data on disability or on 
abortions in population censuses.) Furthermore, sample surveys can be 
tailored flexibly to fit a variety of needs with appropriate methods of 
collection. Choice of timing, of respondents, and of methods can be suited to 
the needs of data collection. The content of the study population can be 
better controlled and directed toward the specific survey aims; such flexibility 
may be prohibited by the public aspects of the census. Sample surveys are 
much cheaper, and they can be made much more timely. They can be 
repeated more often to provide information on rapidly changing or fluctuat- 
ing variables. 

The major limitation of sample surveys is their inability to provide 
sufficient detail for small domains and especially for local areas. This is the 
principal reason for the continuing utility of complete censuses. Though even 
here there are certain important qualifications [Hansen et al. 1961, Waksberg 
1968, Kish 19791. Furthermore, censuses can often (though not always or 
necessarily) obtain better coverage and response rates than sample surveys. 
This is partly because it  is less difficult to check complete coverage than 
sample coverage, but mostly because of the credibility aroused by the public 
relations campaigns for censuses. Thus censuses can obtain better represen- 
tation with greater coverage, because of better frames, than samples. 

Samples usually depend on information from external sources not only for 
frames for sample selection, but also for more precise ratio estimation add 
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TABLE 5.2.1. Eight Criteria for Comparing Three Sources of Data” 

Criteria Samples Census Administrative Registers 

Rich, complex, diverse, flexible *** 
Accurate, relevant, pertinent * ? 
Inexpensive * *** 
Timely, opportune, seasonal ** * 

Inclusive (coverage), credible, P.R. ? 
Population content ** * 

Precise (large and complete) * * 
Detailed for small domains * ** 

* 

uFrom Kish 1979 

similar methods (4.7). Estimates of population totals obtained directly from 
the sample, by inflating the sample totals, would often suffer severe 
underestimates (downward biases) due to noncoverages by the sample; thus 
they are seldom used. Those totals can be estimated more precisely as ratio 
estimates of sample means multiplied by totals from a census or from other 
sources. However, samples of moderate or  even small size can often yield 
with adequate and useful precision the estimates for means, proportions 
(percentages), ratios, etc. Those estimates and comparisons of means, and 
more complex analytical statistics, are often the main purposes of surveys 
and some can also serve as bases for estimating totals. 

The eight criteria in Table 5.2.1 represent my compromise between brevity 
and completeness to cover adequately the needs of diverse situations. In any 
situation the researcher must judge how well each source meets those criteria. 
This list may help to avoid a choice by only a single criterion. Asterisks (*) 
arc used to indicate the relative advantages of each source, according to each 
criterion. The (?) for administrative registers and records refers to their 
extreme differences for diverse variables in different situations. Birth and 
death records, utility records (telephone, electricity), tax records, etc. can be 
accurate or bad; and this remark about accuracy goes for both relevance and 
coverage. Their use can, of course, be very inexpensive (***)-when they are 
available--because their costs were borne by other users. But they seldom 
have the rich, diverse data needed for social research; and the population 
content may be limited to households, to their “heads,” or to undefined 
portions of the population. The striking feature of the table is the comple- 
mentary nature of samples, which dominate five criteria, and of censuses, 
which dominate the other three. 
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5.3 SAMPLES ATTACHED TO CENSUSES 

5.3A List of Sampling Applications 

The literature of survey sampling is oriented to designs for distinct and 
separate surveys. But sampling methods can also be applied to samples 
connected with censuses, and these samples have special features because 
of their double roots. They share methods, techniques, and theory with 
survey samples. But their connection with censuses gives them both special 
functions and special advantages in funds and in resources. Hence they often 
have large sizes; especially in class 1 of Table 5.3.1 (5.3B). They also share 
with censuses some inflexibilities in timing, in the contents of their popu- 
lations, and especially in the restrictions on data that official censuses 
can afford to collect without jeopardizing the wide cooperation they need 
and get. 

The list of available methods should be inspected for their possible 
utilization and practical utility. Any of the methods may be placed on one of 
four levels of availability for any specific situation, referring to either actual 
or potential use: ( I )  successfully used already; (2) used but not successfully 
or adequately; (3) not used though available; and (4) resources not now 
available. Needed methods at levels 2 ,3 ,  or 4 should be examined for possible 
transfer to level 1.  But methods that are not needed badly enough currently 
belong elsewhere. On the other hand, methods that would be needed, but are 
not now available, should deserve special considerations from appropriate 
technicians. 

Most of the methods listed here have appeared in the literature on samples 
connected with censuses. Those methods are described in some detail, with 
justifications and procedures, in many references to which there are several 
guides [UN Statistical Office 1980, Gurney and Manno 1971, Kish and 
Verma 1983, Kish 19791. Most references have detailed and technical 
treatments of only one kind of application. Our treatment here is much 
briefer and superficial, but it covers 16 kinds of applications in five classes of 
purposes (Table 5.3.1). 

There has been great recent growth in the use of samples connected with 
censuses. In the 1980-81 round of censuses most countries have used one or 
more of these applications; and probably a majority have used classes 1 and 
2 [UN 19801. Their uses are probably more uneven than would be dictated by 
genuine differences in objective situations: there seems to be a great deal of 
arbitrariness about which methods have been used and where, depending on 
the choices of individual statisticians and on the decisions of ministers. This 
presentation aims to help future choices and decisions. I hope especially that 
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TABLE 5.3.1. Samples Connected with Censuses 

1 .  

2 .  

3. 

4. 

5.  

Sample enumerations to supplement complete censuses: 
(a) Obtain richer, more diverse, detailed, deeper data 
(b) Reduce costs of collection and of tabulation 
(c) Obtain more accurate data, perhaps with special enumerators 
(d) Reduce aggregate social burden on respondents 
Samples added to complete censuses to evaluate and to improve them: 
(a) Evaluation studies of content (Postevaluation studies) 
(b) Coverage checks; dual coverage 
(c) Pilot studies of questions and techniques before the census 
(d) Quality control of individual enumerators, coders, processors 
Samples from census records, microfilms, tapes: 
(a) Early (advanced, preliminary) tabulation and releases 
(b) Complex, multivariate analyses of relations 
(c) Public-use tapes for further, deeper analyses (without identification of 

Census as auxiliary data for samples: 
(a) Data for selections: measures of size, stratifiers, maps of enumeration areas; 

(b) Data for improved estimation with ratios, regressions 
(c) Samples added to censuses to serve as bases for continuing surveys 
Joint uses of several sources: 
(a) Current estimates for local areas and small domains 
(b) Rolling (rotating) monthly samples of ]/I20 (weekly 1/520) 

respondents) 

seldom addresses or names 

it can stimulate the combined use of several methods, where feasible. The list 
is meant to be complete, and the descriptions are brief but, I hope, adequate 
as reminders for readers who are or would become acquainted with the 
methods and can look up details elsewhere. My five classes for 15 methods 
are somewhat arbitrary but useful, I hope. The classification is by different 
purposes, and notes will be given later about the different methods that may 
be used for them. The samples may be timed to occur before, during, or after 
the census. The sample schedules may be added to the census schedule or be 
separate from it; and they may be independent from or dependent on the 
census schedule. The sampling units may be households, enumeration areas 
(EAs), or administrative units. Some of the possible combinations of all 
those possible procedures and purposes are better than others. 

Administrators and the technicians of statistical offices should have joint 
chief responsibility for the contents and methods of censuses, under the 
general guidance of public bodies and officials. But social researchers and 
other users outside that definition need not be mere passive receivers of data. 
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For using census data, for analyzing and reworking them, they need to be 
aware of the problems and limitations and of the possibilities inherent in 
those data. Furthermore, some researchers can make useful contributions to 
improving the quality and enlarging the scope of census results. 

5.3B Samples as Supplements to Censuses 

On complete censuses each question is expensive, because it is multiplied by 
the sizes of the populations (of households, persons, farms, etc.). Hence 
complete censuses should be brief and simple, sometimes with precoded or 
easily coded items, (and sometimes now with self-enumeration forms) to save 
costs of collection and tabulation and to reduce the respondent burden on 
society. However, ever more diverse data are being obtained with samples 
that are portions of the entire census. These samples are substitutes for 
complete censuses; hence they tend to be large, ranging from perhaps 1:lOO 
to 1.4 of the complete census. These result in very large samples compared 
with the usual survey samples, yet they can achieve most of the savings that 
sampling from censuses can yield. It may even be desirable to design a large 
sample (1:4) for items needed in great detail, plus a much smaller sample 
(1 : 100) for more difficult items, which can also tolerate less detailed results. 
Sampling reduces the total cost for these data, yet it may also yield higher 
accuracy, especially if special enumerators can be trained for them. On the 
other hand, compared with ordinary surveys, large sizes are facilitated by the 
availability of funding and the efficiency of census operations, which are 
cheaper per schedule than sample surveys. 

Concerning methods of sampling and data collection, several choices must 
be made, and they are interrelated. (1) A selection rate may be applied to sample 
households from all enumeration areas (EAs), or the sample may consist of 
entire EAs. (2) The sample may use the regular enumerators of the complete 
censuses, self-enumeration by respondents, or special enumerators trained 
for the sample. ( 3 )  The sample schedule may be jointly completed with the 
core census schedule, done as a separate operation, or perhaps done jointly 
with another operation, such as 2a (evaluation) or 4c (continuing survey). 

For surveys attached to the census, the sample may be spread to all EAs; a 
sample of EAs may be selected for complete enumeration within EAs; or it 
may involve a two-stage selection of EAs, then of households. The choice of 
the design is influenced by a number of interrelated factors: the size of the 
operation and the required degree of detailed breakdown of the results; 
nature (complexity) of the supplementary information to be collected; size 
and nature of EAs; travel conditions; type of enumerators available for the 
census and required for the attached survey; how often the households can be 
visited and the related considerations of time, cost, and respondent burden; 
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whether the attached survey replaces or is additional to the ordinary census 
operations in the sample areas. When several samples are used to get different 
data, there is a conflict concerning spreading them over many different units 
versus concentrating them all in the same units. Spreading the schedules 
avoids the concentration of respondent burden, but concentrating them 
reduces costs and yields more information on relations between sets of 
variables. 

For simpler items that can be combined with the basic census 
enumeration-during a single visit, using the ordinary census enumerators- 
the sample can be easily spread over all census areas. The more complex 
and specialized the inquiry, and especially if specialized enumerators are 
involved, the more advisable it  becomes to concentrate the inquiry to a 
sample of EAs. This can be more advisable also when the objective is to 
produce results at national or major domain levels, rather than at  the level of 
small domains or local areas. Selection of complete (compact) EAs has the 
advantage of simplicity and lower costs; it is particularly appropriate when 
specialized procedures and enumerators are used, or when the survey 
replaces the ordinary census operations in the sample areas. However, this 
concentration also increases variances of the estimates, which would be most 
serious for small geographic domains, though it may not be critical for 
estimates for major domains and for crossclasses well distributed over 
different areas. 

5.3C Samples to Improve Censuses 

Whereas the preceding supplements substitute for and resemble censuses, 
samples added to improve censuses differ from them and are usually smaller, 
perhaps from 1: 100 to 1 : 1000, or even to 1 : 10,000. Postenumeration studies 
(PES) have been used to evaluate and check the quality of census enumera- 
tions, to estimate their biases, and to measure response errors. In some 
versions the PES enumerators are given the census responses for their sample 
cases; then they use them to get the “best” answers with more and better 
questions. In other versions, the PES interviewers are kept ignorant of census 
responses in efforts to get PES responses independent of them. However, 
independence is not complete, because the respondents have not entirely 
forgotten the census interview. Reconciliation of the pairs of responses for a 
“best” answer can come later. 

Checks for completeness of coverage would usually utilize the first 
version: the check enumerators would have a list of units in defined areas, 
and then try to find missed units. Checks for coverage from data independent 
of the census are possible, but less likely. On the other hand, sample studies 
using the techniques of “dual coverage” [Marks, Seltzer, and Krotki 19741 
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for estimating undercoverage are possible where lists of households (or other 
units) are available from some source (such as registers). The procedures for 
(and the noncoverage from) this other list should be quite different from the 
census methods for the technique to be fairly effective. The undercoverage is 
measured from the differences of units covered by one list but not the other. 

Instead of a PES done after the census, a sample of high-quality 
enumeration may be done simultaneously with the census. A sample of 
EAs may be covered with better methods, better enumerators, longer ques- 
tionnaires, instead of the census methods used in the remainder of the 
country. The extra expense is less than with double coverage of sample areas, 
and the respondent burden of double interviews is avoided also. The contrast 
of these check areas with areas covered by census methods yields estimates of 
the net bias. These estimates of the net differences from the sample/census 
comparisons are free from the bias of memory to census responses, but they 
have higher sampling errors than with double coverage. Also, the method 
lacks estimates for the kind of errors that may be obtained from double 
coverage of the same households and individuals. But on the whole this is a 
simpler and cheaper method. The sample areas should be selected with 
careful matching (stratification) of control areas. The sampling units for 
quality checks are more likely to be EAs or administrative districts than 
households, because these would be inconvenient and difficult to administer. 

Evaluation surveys are designed to check the average quality of the census 
and of its major components. Quality control and correction of individual 
enumerators are different matters; they need specific treatment suited to 
actual field conditions and to procedures of supervision. The quality control 
of editors and coders in the office is another specialized matter we will not 
treat here, and they are easier than checks for fieldwork. 

5.3D Samples from Census Schedules 

Whereas in classes 1 and 2 we discussed sampling of the data collected in the 
field, in class 3 we are concerned with sampling from the already collected 
census data. There are three distinct purposes for such samples, and their 
timing differs greatly; hence they need different methods of selection. 

Where early tabulations and releases are wanted, it is convenient to base 
them on selections of entire EAs (or even administrative districts) in accord 
with the system of returns from the field collection. The selections should be 
predesignated and speeded along. They should represent good and valid 
samples, not merely the first arrivals, which are bound to be biased portions 
of the population. 

Continuing advances in both statistical and computing methods have 
made it both desirable and possible to conduct more complex analyses of 
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census data, and demands increase for deeper multivariate analyses of 
relations. For some of these it is convenient to select samples from the entire 
census to reduce computations, though this need for sampling may be 
reduced with faster machines and better programs. The analyses can vary .in 
nature, scope, and timing. They are usually done from tapes in the statistical 
offices to preserve the confidentiality of the data. 

Public-use tapes are also prepared from census tapes for the use of 
researchers. Data that could identify individuals are removed from the tapes, 
and random selections help greatly to prevent identification. Samples of 
households are preferred for these uses; spreading the sample reduces the 
level of sampling errors, and it also facilitates the estimation of those errors 
by avoiding clustering. Households are easier to select than persons, and they 
provide samples of persons, families, and households. The clustering of 
individuals in households matters little in analyses, which seldom group 
multiple members of the same households into the same cells. Such public- 
use tapes are gaining in use and several countries are preparing them. The 
spreading availability of computers and related skills is chiefly responsible 
for this growth. Furthermore, public-use tapes are also being prepared from 
schedules of old censuses for historical analyses. It is also true (and sad) that 
the releases of “current” census data may need several years, making their 
analysis somewhat “historical” for rapidly changing variables. 

5.3E Censuses as Auxiliary Data for Samples 

When comparing the advantages of sampling, we must remember that good 
samples benefit greatly from being based on and aided by census data. 
Those aids and bases are especially important for national and other large 
populations and especially for samples of household members. Censuses 
provide the chief sources for measures of size of sampling units. They are also 
the chief sources for stratifying variables. Seldom or never can we find other 
sources with the detailed and complete population coverage that the census 
provides at low relative cost. Furthermore, census data, maps, and boun- 
daries for EAs serve in many samples as important sampling units. The 
EAs usually serve as either primary or  intermediary sampling units, and 
the sampler must provide the final list of dwellings (households). Addresses 
and names from censuses can seldom be used, because of both their con- 
fidentiality and their obsolescence. 

Census data can also be used to improve statistics, especially through ratio 
and regression estimates (4.7). When used properly, their inaccuracies, 
differences, and obsolescence need not cause the biases associated with naive 
and improper uses. 

Some of the samples described earlier could be used directly as bases for 
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continuing surveys. This is especially true for samples of EAs used for 
supplements (class 1) or evaluations (2a). These samples could then have 
direct links with the census. This is merely a proposal for which I know of no 
application at the present. 

5.3F Joint Uses of Samples, Censuses, and Registers: Estimation for 
Small Domains 

Census data are usually obsolete, data from registers inadequate, and sample 
data lacking in detail, especially for local areas. Since the strengths and 
weaknesses of the three sources are complementary, it seems reasonable to 
try to combine the strengths of the three sources to obtain estimates for small 
domains, especially for local areas; estimates that are current, pertinent, and 
accurate. To the general needs of researchers have been added the needs of 
social planners, of administrators, and of policy makers for valid, current 
data for small domains and local areas. Local area estimation has become a 
fast-developing field, being pushed by increasing demands, and simul- 
taneously pulled along by new developments in computing technology and 
new statistical techniques. These problems of “postcensal estimates” are 
treated currently as technical problems for estimates of the total population 
in small local administrative areas, with a new, large, but specialized list 
of publications; a few references can be the key to the longer list [Purcell 
and Kish 1979, 1980; Heeringa 1981; Platek et al., 19871. 

Estimates for small domains serves as a third name for this new field and is 
more indicative of its future interest for social researchers. 

We may also consider future designs to obtain the detailed data of 
censuses from rotating samples. For example, a rotating monthly sample of 
1: 120 can cover the nation in 10 years. If it is necessary to measure monthly 
changes, we can have samples of 1:60 with 50 percent overlaps. The 
collection period may be spread over the entire month or be confined into 
representative weeks [Kish 19811. 

The joint use of registers with sample surveys is becoming so successful 
that Denmark substituted those estimates for local areas and omitted its 1980 
census. Other Scandinavian countries, with excellent population registers, 
are considering following that example to save the cost of the 1990 censuses. 
But most countries will probably need censuses for many years yet. 



CHAPTER 6 

Sample Designs Over Time 
Consequently the results obtained at a single place and in a single year, however 
accurate in themselves, are of limited utility either for  the immediate practical end 
of determining the most projitable variety, level of manuring, etc., or for  the more 
fundamental task of elucidating the underlying scientijic laws. F Yates and W G 
Cochran, The Analysis o f  Groups of Experiments. 
. . . the race i.s not to the swift, nor the battle to the slrong. neither yet bread to the 
wise, nor yet riches to men of understanding, nor yet favour to men of skill; but 
time and chance happeneth to them all. Ecclesiastes, 9.1 1. 

There have been many articles published, as well as chapters and books, 
about separate problems and individual aspects of the time dimension in 
social research and related fields. Some of these have appeared within the 
context of survey sampling, some in the literature of experimental designs, 
and many concerning observational studies. Those treatments, whether 
theoretical or empirical, usually explore some single aspect or a few limited 
aspects of the time dimension, and even within a single aspect only two or 
three alternative categories are compared in detail and depth. For example, 
discussions in the sampling literature tend to concentrate on designs for net 
changes versus the usual static cross sections, and even here research 
purposes are subordinated to the design aspect. Other examples: Problems of 
longitudinal studies, of nomads, of retrospective data, etc., are all discussed 
as separate problems, in an ad hoc manner. 

On the contrary, here we try to be comprehensive: to explore jointly all the 
diverse aspects peculiar to the time dimension, and to uncover the connec- 
tions between all those aspects. Also, under each aspect we attempt to list all 
the alternative available categories. These bold claims of comprehensiveness 
should awaken the attention of the readers and their instincts for hunting 
counterexamples. Is this list of aspects and of alternatives within aspects 
complete and useful; are these lists both sufficient and necessary? 

150 
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But that immodest claim can be softened with modest and necessary 
admissions. First, most of those aspects and their alternative categories may 
be familiar to most readers and few or none may appear entirely new; only 
bringing and linking them together is novel. Second, the boundaries of some 
categories may seem arbitrary. Third, the values of the categories depend on 
the reader’s judgment of their utility in diverse situations. Fourth, our 
exploration must be brief here: Our list can serve only to remind readers of all 
aspects and of the available alternatives under each; to bring to mind what 
they already know of each; and to encourage them to consult references 
under each. (Note that Section 3.6 deals with times curves of response and 
Section 3.5 with time biases TI to T4.) 

This overview of all temporal aspects may help the researcher find a better 
combination of the many alternatives for an integrated design. Several good 
references may best serve as background and as comprehensive guides to the 
analysis of longitudinal studies [Janson 1981; Schulsinger, Mednick, and 
Knop 1981; Duncan and Kalton 1986; Goldstein 1979; Wall and Williams 
1970; Harris 19631. These and my many references cannot keep up with the 
veritable explosion of new publications on longitudinal studies. The reasons 
for that vast recent expansion come from the recent growth of empirical 
work, of many new longitudinal and repeated surveys in social research, 
almost absent in earlier years. That growth is being accompanied by the rise 
of new methodological and computing tools. I offer three explanations for 
not covering more fully the new publications. First, many of them deal with 
analytical tools, more than with designs that are covered here. Second, most 
of the others deal with the details of measurement and administration, also 
beyond my coverage. Third, even if I could cover them in 1986, the rapid new 
developments would soon make them obsolete. In any case, many of the 
following ideas about design were fresh and are useful now. 

6.1 TERMINOLOGY AND CONCEPTS 

6.1A Termino1.ogy 

My aim is practical rather than pedantic: to make the diverse terms 
commonly used in this field serve us better by having clearer distinctions 
between them; to strive for one-to-one correspondence between terms and 
uses, instead of multiple uses for the same term and multiple terms for the 
same use. I was guided partly by current usage (which is not uniform), partly 
by the connotations of words, and partly by the diverse needs of the field. 

Repeated surveys denote “similar” observations on the “same” popula- 
tion, but without specifying designs for the overlapping coverage of the 
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1 One-time, static, snapshot study 

Retrospective study 
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Time > I > 
Figure 6.1.1. Designs for covering time spans over populations. 

Vertical stems denote collection dates and horizontal bars the reference periods being 
covered. Retrospective studies cover long periods, perhaps entire lifetimes, from one collection 
date. Repeated studies may be collected at  irregular intervals, may have different reference 
periods, perhaps ending before the collection date. Periodic studies come with evenly spaced 
collection periods and with similar reference periods generally. Continuous periodic studies 
cover the entire time span with contiguous reference periods. Continuous registers cover the 
entire time span. All of these, except for the one-time “snap shot” A, have been loosely called 
“longitudinal” studies. However “strictly longitudinal” has been used to denote panel designs 
for the same elements, as  in 5 of Figure 6.1.2. Otherwise the coverage refers to the same defined 
population, although individuals may change over the span through births and deaths and 
migrations. For example, repeated studies with C,  D, or E can be applied to single communities 
or to countries, although their inhabitants change continually. 

same set of units. Periodic surveys refer to surveys repeated at specified 
regular periods over a longer interval of time. The “same” population needs 
identification because populations change over time both in extent and in 
content (e.g., cities and countries change boundaries); for complex units 
(families, organizations) changes can be frequent as units (persons, adults) 
are born, die, and migrate. “Similar” observations must also be defined, 
operationalized, and collected (Figure 6.1. I ) .  

Overlapping designs refer to covering the same sampling units in repeated 
periods. The overlapping units may be defined as the elements of analysis 
(individuals, persons), or they may be larger units, such as area segments. 
Units such as families, households, composed of distinct elements, present 
problems of frequent and complex changes. Designs may require either 
c o r q h t e  or partial overlapping; the latter permits gradual changes of the 
sampling units. In nonoverlapping designs the units are changed deliberately 
for each period (Figure 6.1.2, Section 6.2). 
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5 1 Nonoverlap P = 0 

2 Partial overlap 
O < P <  1 

3 Subsample 
n2 = Pn, < n1 

R 4 Complete overlap P = 1 

5 Panel (same elements) 
P =  1 

6 Split panel design 
designs (1 + 5 + 2) 

P < n ,  

Figure 6.1.2 Designs of overlaps. 
The overlap is P = 0 for design 1 and P = 1 for designs 4 and 5 in two periods. These may 

refer to clusters of elements, such as area segments, blocks, or towns. In designs 1,2, 3 period 1 
is shown to have larger samples than period 2. Panel for design 5 denotes a complete overlap P* 
for the same elements (elementary units, e.g., persons). The designs, shown for two periods, can 
also be applied to more periods. Design 6 combines a repeated panel with nonoverlaps of 
different sizes in a design I call split-panel design (6 5), the panel P* provides partial overlaps 
0 < P < I for any two periods. 

Panel surveys refer to overlapping studies with repeated observations on 
the same elements, on the same persons. Panels face problems of learning, 
fatigue, and losses from mortality and mobility; of moving and high locating 
costs; and of identification for complex units, like families; but they are 
needed for detecting the dynamics of gross (micro) changes of individuals 
(though these get confounded with errors of measurement). On the other 
hand, for measuring net (macro) changes of averages it may be easier and 
clearer to overlap simpler units of sampling (such as area segments) and still 
retain much of the gains in the variances from correlations. (Some studies 
have done both: retain segments for clear net changes and follow moving 
individuals for gross changes.) The gains from correlations are also retained 
proportionately in partial overlaps. Net changes may be measured also with 
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nonoverlapping or independently selected samples, though with higher 
variances. Panels have also been called longitudinal surveys and follow-ups. 
But the term jollow-up has also been used confusingly for overlapping 
surveys, for samples for quality checks, and for call-backs for nonresponses. 
And longitudinal can also refer to several kinds of repeated surveys; 
longitudinal studies is commonly used for various methods of analysis over 
time, with strictly longitudinal studies denoting panels specifically [Janson 
19811. 

A third use for overlapping and panel studies is for obtaining incidence of 
new events between two (or more) dates (periods), in contrast to measuring 
prevalence of all events at one time. These are called multiround surveys by 
some (e.g., demographers); or prospective studies by others (e.g., health 
scientists), in contrast to retrospective studies that depend on memories or 
records for past data. Such designs should be panels for measuring individual 
changes, but can be nonoverlapping studies for net changes. The collection of 
data on new events is sometimes aided with records (diaries, budgets) kept by 
respondents, by others, or by machines, etc. 

To avoid confusion we need to distinguish three kinds of periods 
concerning any survey: a colleclion period during which data are collected; 
reference periods defining the data, which may differ greatly for diverse 
statistics; and reporting periods, which can consist of one or more reference 
periods. For example, the U.S. Census is collected for weeks in April, the 
reference and reporting periods are April 1 for current data but the preceding 
calendar year for economic data, etc. In multiround and cumulated surveys 
the reporting periods are pooled from reference periods (6.6). Reference 
periods may be as short as a single day or even a minute (in time studies), a 
week (for employment) or month, or as long as a year (for income). 

6.1B Representing Time Spans 

Changes in populations and in associated variables occur within the 
perceived smooth, unidirectional flow of time. We can now briefly compare 
alternative strategies of temporal designs for social research and sample 
surveys; usually one of these alternatives is accepted merely by habit or 
tradition. Probability selection of and averaging over the time dimension has 
been neglected compared with spatial and other aspects of populations. That 
neglect may be explained by familiar collection methods: decennial censuses 
on traditional days; cross-section samples on arbitrary or customary days. 
Bases for inferences over long time intervals have not been investigated 
thoroughly . 

1. Unique or special periods may be accepted from natural forces (e.g., 
seasons for harvesting crops, for lambs’ births, monsoons, etc.). Dates fixed 
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by laws, rules, and customs-such as Christmas, New Year, fiscal year, 
month’s end, Sundays (or Fridays or Saturdays)-may seem arbitrary, 
provincial, and temporary, but they are fixed for the population, hence 
beyond the designs of researchers. 

2. “Typical” (representative) periods are commonly used; all too com- 
monly, I believe, in confusion with either uniquely fixed times (1) or proper 
sampling of time (4). A good example is April 1 for the reference dates of 
decennial censuses of the United States, because that date was thought to be 
more “typical” and convenient than many other days and is now traditional. 
Less convincing seems the choice of the third week to represent each month 
in the Current Population Surveys [USCB 19781. However, there are many 
worse examples of choosing “typical” (representative) periods by judgment 
in preference to sampling the time dimension; tradition, convenience, and 
costs may explain their prevalence. Remember that “typical” areas were also 
commonly used for spatial representation until the recent spread of proba- 
bility area sampling. 

3. Complete and separate coverage of all reference periods over the 
reference interval is a temporal analogue of a complete census over all 
administrative areas. These yield data for all periods for averages over them 
and for changes between them-e.g., the yearly survey over all 52 weeks of 
the Health Interview Survey (NCHS 19581; different examples arise from 
time series of some financial data. We can distinguish continuous from 
discontinuous periods over the entire intervals; the Current Population 
Surveys [USCB 19781 cover all 12 months over the year, but only a “typical” 
week to represent each month (E versus D in Fig. 6.1.1). Continuous 
collection of data is seldom feasible; but reference periods can be, as in 
multiround surveys, and from these the aggregates and means for entire 
intervals can be computed. However these naturally raise the possibility of 
sampling instead of complete coverage of all reference periods. 

4. Sampling over a time interval can be an alternative to either confining 
the sample to one or a few “typical” (representative) periods (2) or com- 
pletely covering the entire interval (3). Models of temporal variation can be 
made similar to spatial variation: as a target population varies in space so we 
can consider time as another dimension of variation. Populations vary from 
year to year and week to week, as they vary among regions and among 
counties. Probability sampling spread over the population area serves as the 
accepted strategy to cover and counter spatial variation. But temporal 
variation can be even more important, especially for cyclical variations, e.g., 
seasonal, weekly, or even diurnal. Vast temporal fluctuations also occur in 
epidemics, economic situations, and social and political attitudes, and rapid 
and widespread changes have become common. To cover and counter these 
changes either complete coverage or sampling is needed. However, for many 
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characteristics, which have temporal stability but much spatial variation, 
spatial covei age may be more crucial. 

For covering and sampling entire time spans we must overcome not only 
the inertia of habit, and tradition, but also some practical obstacles, 
discussed in (6) below. Philosophical differences also exist, because we accept 
the spatial boundaries of nations, and of administrative areas, whereas time 
appears continuous, smooth, and unidirectional. But we accept natural 
periods of day and year, also cultural spans such as weeks, months, and 
decades (historians use centuries, dynasties, and ages in hindsight). 

In any case, definitions and models of the target population should have 
temporal as well as spatial dimensions (2.1). When practical constraints, as 
for decennial censuses, demand a single period, we agree that judgmental 
selection of a representative period seems better than a random choice. 
However, when a larger number of periods seem feasible, consider a 
probability selection of periods (as you would of areas), e.g., a stratified 
selection of 24 out of the year’s 365 days. 

Methods for sampling time can be flexible and diverse, similar to samples 
of spatial dimensions. Selection with probabilities proportional (PPS) to 
measures of size (MOS) may be used. For example, a sample of clients may 
be selected from a selection with MOS of institutions of diverse sizes. Thus 
probabilities are maintained for clients in the population, since large 
institutions receive large selection probabilities (MOS) but proportionately 
shorter periods (If all clients entering within short periods must be accepted, 
the lengths of the periods may be varied inversely to the MOS for 
institutions.) 

5 .  Temporal x spatial matrix for averages (marginals) for both dimen- 
sions can be designed with periodic samples. A good example again is the 
Health Interview Surveys [NCHS 19581 that yield weekly national averages, 
yearly statistics for small domains, and monthly and quarterly data for larger 
domains. For an early example see [Kish et al. 19611. The samples are too 
small to yield both spatial and temporal details simultaneously, but each 
period can be designed to sample the entire population area; furthermore, the 
periodic samples can be so controlled that they cumulate to subtotals 
(regions) and totals (national) that are balanced (stratified). 

In the time x space matrix we cannot select each cell, but we can sample 
each row and each column with a balanced design. Each weekly row may 
yield national averages; each spatial column perhaps yearly averages, and 
monthly averages for larger domains; and each average can be balanced 
against the other dimension. The design resembles stratified or controlled or 
Latin-square designs for two variables. Furthermore, in addition to spatial 
variation, ather dimensions-social, economic etc.-may be covered. (See 
also Section 6.6D for cumulated and rolling samples.) 
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Sampling the periods may thus be an alternative to complete coverage 
(3) to achieve greater spatial coverage and to lower cost. The commonly 
assumed contradiction of “longitudinal” versus “cross-section” designs is 
false conceptually, but it does refer to cost problems of covering long spans 
of both time and space; hence typically cross sections tend to sacrifice 
temporal coverage whereas longitudinal studies are confined spatially. 
Matrix designs for sampling both space and time with balanced periodic 
samples may provide a better solution. 

6 .  Repeated (periodic) surveys versus single periods. Periodic surveys 
designed for specified periods can be averaged over their entire interval; 
similarly, a large survey for one period can be divided instead into several 
periods and averaged over a longer interval. The advantages of repeated 
samples need stressing. (a) With repeated samples we may be able to improve 
quality and reduce costs. Hiring and training a large force of enumerators 
and clerks for one large survey (or census) can be an expensive and risky 
input for the short survey effort. (b) Repeated samples can yield statistics for 
time series to estimate changes and trends (seasonal, secular, etc.) and to 
detect irregular and sudden variations. (c) Averages and sums of repeated 
samples can lead to better statistical inference than a single, concentrated, 
“one-shot’’ sample: Probability selection of time segments from the entire 
interval permits statistical inference from the sample to the interval. On the 
contrary, inference from a judgmental choice of a “typical” period depends 
on subjective assumptions and is exposed to the vagaries of unknown trends 
and irregular variations. 

On the other hand, the familiar advantages of “one-shot’’ samples are 
widely accepted. (d) A specific date may fit some legal or traditional 
requirement. (e) A complete census or heavy coverage during one short 
period may be simpler for investigating relations among many variables and 
units. (f) It may be easier and cheaper to operate, especially for small and 
widespread samples, than repeated samples spread over a long interval. (g) It 
permits analysis, presentation and use of results more rapidly after concep- 
tion and funding [Kish 1965a, 12.5DI. 

6.1C 

1.  Retrospective data generally refer to methods based on the memory and 
report of respondents to obtain data about events, behaviors, and attitudes. 
Almost all social data are retrospective in some sense, since researchers 
seldom witness the emergence of data; hence we must use relative frames of 
reference. Near one extreme are birth histories; mothers can recall and report 
rather well total number of live births, as well as the number of their living 
children; less well the total pregnancies, including miscarriages and abor- 

Collection of Data: Alternatives Over Time 
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tions; even the dates of all births tend to be well reported in some cultures but 
not in others. We see here the requirements for good retrospective data for 
longer periods: Events should be rare and important for long recall. The 
respondent has to be aware of, able to recall, and willing to report the events, 
and for some data also their timing. For example, respondents may be 
unaware of or may have forgotten some miscarriages and their timing, and 
may be unwilling to report abortions or deaths. 

For consumer items, dates and data about house purchases may be 
remembered for years; for one year for autos; but hardly a day for bread or 
cigarettes. The quality of retrospective data varies greatly for different items, 
different periods, different respondents and cultures, and different methods of 
measurement. We cannot hope here even to refer adequately to the vast, 
confusing literature [Sudman and Bradburn 1973, 1974; Moss and Goldstein 
1979; Schuman and Kalton 1982; Gray 1955; Zarkovich 19631. Retrospective 
data are and must be widely used because they can yield so much more data 
for so much less effort than the following alternatives. We must distinguish 
between respondents (observational units) and the individuals (population 
elements) in a study; e.g., mothers would be respondents on diseases and 
vaccinations of their children. 

2. Registers, records, or direct observation can at times be alternatives to 
retrospective recall. The preceding problems above of awareness, recall, and 
response can be translated here into completeness, availability, and errors. 
Registers refer to data kept for some administrative use (the population 
registers of Scandinavian countries are the best example); but there are also 
records of schools and of utilities, income tax returns, birth and death 
registers, and many others of diverse value and coverage. The data are cheap 
and continuous, but their extent, accuracy and availability are often greatly 
limited [Janson 1984; UN 1962; Marks, Seltzer, and Krotki 1974; U.S. Dept. 
Com. 19801. 

On the contrary, records kept by respondents specifically for research 
objectives may require great expenditure by the project and efforts by 
respondents, and they may meet reluctance and refusals; but they have been 
used for studies of buying, income, and other behaviors. Methods for 
sampling observed behavior with reduced costs and respondent burdens are 
difficult but have been devised, e.g., machines for sampling home TV 
operation. Hourly activities have been sampled with portable alarms or 
speakers to monitor behavior at random moments. Records kept by a 
research staff that depend on direct observation of individual behavior are 
expensive and intrusive; they have been used in confined situations, such as 
schools, institutions, and workplaces. 

Diaries, ledgers, and letters have been used in historical and biographical 
research, dispensing with representation; such ad hoc observations have been 
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done in too many ways to list here. Unobtrusive observations is the beguiling 
name given to ways for counting diverse marks left unintentionally by 
humans for the purpose of measuring some of their behaviors [Webb et al. 
19661. This resembles the techniques of archeology and of anthropology for 
residuals from vanished people, such as inspecting their trash and bones. 

3 .  Longitudinal studies, follow-ups, and multiround surveys are all names 
that have been used for repeated samples for observing populations over 
intervals. The repeated observations can have several purposes and diverse 
designs, and both purposes and designs are discussed in Section 6.2. Here we 
merely note that repeated studies are alternatives to retrospective data and to 
registers and records. 

6.2 PURPOSES AND DESIGNS FOR PERIODIC SAMPLES 

The title of this section emphasizes that designs should follow, not precede, 
purposes and follow them closely. Designs over time are generally made for 
regular periods, but they can serve repeated samples with irregular periods 
and continuous studies if those are feasible. Samples is a broad enough term 
to refer to experimental designs and observational studies, to which these 
concepts and designs can also be applied, though they originated chiefly from 
sample surveys. 

In Table 6.2.1 we note five purposes and six designs. The first four are 
paired with similar letters on the same four lines. These pairings call attention 
to designs that best serve, with reduced variances, each of the four purposes. 
Most periodic studies have several purposes and thus we should face-not 
necessarily solve-the difficult problems of multipurpose designs (7.3). 
Actually, current levels (A) and net (mean, macro) changes ( C )  can be served 
with any of the six listed designs, but with some increase in the variances or in 
costs. But individual (gross, micro) changes (D) need panels, and cumu- 
lations (B) need some changes. Often reasonable compromises become 
possible-to the degree that purposes can be defined. Furthermore, extra- 
neous considerations may rule out some designs (e.g., overlaps may be either 
prohibited or enforced) and thus force the use of less efficient, but still valid, 
designs. The chief variation in these designs concerns the amount (and kind) 
of overlaps between periods. The rotation scheme of complete overlaps 
shows, with ma-aaa, that the periods have all common parts; the non- 
overlap with aaa-bbb shows none; and the partial overlap abc-cde-efg 
shows c and e as one-third overlaps between succeeding periods only. 

This section concentrates on the effects of varying proportions of overlaps 
P in diverse designs on different purposes; in complete overlaps P = I ,  in 
nonoverlaps P = 0, and in partial overlaps 0 < P < 1.  The purposes are 
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TABLE 6.2.1. Purposes and Designs for Periodic Samples 

Rotation 
Purposes Designs Scheme 

A. Current levels 

C. Net changes (means) 
D. Gross changes D. Panels Same elements 

(individual) 
E. Multipurpose, time series E. Combinations, SPD 

A. Partial overlaps 0 < P < 1 

C. Complete overlaps P = 1 uaa-aaa-aaa 

abc-cde-efg 
B. Cumulations B. Nonoverlaps P = 0 aaa-bbb-ccc 

F. Master frames 

discussed in terms of variances for estimated means, because means (and 
percentages, rates, proportions) are both the most used and the simplest 
estimates to treat. Effects on other estimates will not be entirely different but 
they are too many, diverse, and difficult to be explored here. 

Effects on the variances of means from different proportions P can be 
treated clearly in this brief section. Other questions of biases, of feasibilities, 
of costs are often even more important, but also more difficult. They are 
treated elsewhere in this chapter, and in many places, including all sampling 
books [e.g., Kish 1965a, Sec. 12.4-12.61. Much of the discussion also 
assumes for simplicity that the periodic samples are of the same size or of the 
same sampling fraction; but changes in sizes, fractions, and designs are 
possible, and even desirable in some cases, as noted below. 

6.2A 

Current levels is one name for the most common type of estimates for single 
“points” in time, whether the point of reference period is a single day or 
minute, or a week, a month, or even a year. Static estimates may be a better 
name than current, because the time of presentation and use may be years (or 
centuries) after the reference period, and one-shot or snapshot have also been 
used in descriptions. “Cross section” has been used commonly to distinguish 
single-period surveys from longitudinal surveys. But that distinction perpe- 
trates a confusion of temporal and spatial aspects, and it originates in 
financial constraints that confine broad cross sections to single periods and 
confine longitudinal studies to restricted sites. However, many studies of 
single periods have been confined to restricted sites; on the other hand, 
periodic studies of national cross sections, though costly, have emerged and 
yield valuable data (6.2D). Current levels for each period serve as important 
first results even of periodic studies. 

Current Levels and Partial Overlaps 
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Variances of current estimates are the same for complete overlaps P = 1 
and nonoverlaps P = 0; they can be expressed briefly for means as 
Deft2S2/n, where Deft2 is the effect of the sample design on either the 
element variance S 2  or the sample size n (7.1). 

That simple formula also holds for simpk means from partial overlaps 
(0 < P < 1). But statistics based on them can utilize the overlap P for a 
reduction of the variance with a complex mean: With help of the correlation 
R 2  between surveys within the sample overlap P ,  the portion (1 - P) of the 
preceding sample is combined with the current mean to improve it. The 
variances are reduced by the factor [ l  - (1 - P ) R 2 ] / [ 1  - ( 1  - P ) 2 R 2 ] .  
This is a clever technical contribution much explored by sampling theory 
[Cochran 1977, Secs. 12.1 1-12.121. 

The actual gains unfortunately tend to be modest in most practical 
situations; the maximal reduction in variance, utilizin optimal proportions 
P and optimal weights, is in the ratio [I + ,/&)]/2. The reductions 
increase to about 33 percent only for very hi h R 2  values, seldom seen in 
practice; for R = 0.9, for example, [l + ,/&)]/2 = 0.72; this ratio is 
obtained either with the optimal P = 0.30 or with P = 1/3. For R = 0.6 
that ratio becomes 0.9, only a 10 percent reduction of the variance. We note 
that overlaps of P = 1/3 or 1/4 yield close to optimal reductions for most 
values of R 2 ,  even when these vary greatly for diverse variables. This is a 
remarkably robust and useful result. Note also that in a long series the 
complex mean from the preceding sample can already benefit from reduc- 
tions from its predecessors, and that using a longer series provides further 
slight reductions-only slight, unfortunately, because the factor (1 - R 2 )  
“decays” quickly with repetition; e.g., with R = 0.9 we never reach 0.60. 
Happily, for the other purposes of repeated surveys statistical theory is more 
productive as well as simpler. 

6.2B Cumulations and Nonoverlaps 

Cumulations refer to the purpose (and practice) of accumulating, pooling, 
and aggregating sample cases of individuals. No standard distinctions among 
these four terms exist and there is little literature. We can distinguish later 
(6.6A) between cumulating cases and combining statistics, but here both 
stages are treated with combined means, based jointly on periodic samples. 
With the greater availability of periodic samples their use is increasing; hence 
we have devoted Section 6.6 to those new uses. 

Means based on several periodic samples covering a longer interval is the 
purpose we treat here, but the implications are similar for other statistics, 
such as regressions and other analytical statistics. The aims of cumulations 
are threefold (6.6B). First, they obtain greater precision, with lower variances 
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from larger sample bases, especially important for smaller domains. Second, 
from the larger sample bases of cumulations we also expect greater spatial 
spreads of the design, so they can better cover small domains. Third, they can 
cover temporal variations-seasonal, cyclical, irregular-over longer inter- 
vals that include several periods. 

Samples with no overlaps, P = 0, are best for cumulations. They are 
simpler and also yield lowest variances: S j / 2  for two periods and S j / J  for J 
periods, where the Sf are variances for single periods assumed to include 
DeftZ and factors like (1 - f ) .  For overlapping samples, however, the 
correlations R between periods increase those variances (6.6F). For example, 
the combined mean of two similar samples has Var (XI + X2)/2 = 
Sz( 1 + 1 + 2PR)/4n = (S2/2n)( 1 + P R ) ;  this appears as the mirror image 
of (1 - PR)  for the difference of two means in (6.2C). Thus an overlap of 
P = 1/3, with R = 0.75 has a factor of 1.25 for increase of the variance. 
This can be decreased with better estimators and variance increases can be 
held under 50 percent while using the overlaps. As ratios of the variances 
these factors are much smaller than the threefold or even sixfold reduction 
possible for variances of changes. (See Table 6.2.2.) 

Thus cumulations can be had even with partially overlapping samples; 
good compromises can be obtained, for example with P = 113, which is 
optimal for current levels and not bad for net changes. However, optimal 
allocations of P = 0 for cumulations remain in conflict with optimal P = 1 
for measuring changes. 

6.2C Net Changes of Means and Overlaps 

Net change refers to the difference d = X, - X2 of means between two 
periods; whereas gross change deals (in 6.2D) with the total changes of 
individuals, some of which remain hidden (because they cancel) in the net 
change of means. Measuring nct changes are common and important aims of 
surveys and studies, and they are also related to other uses of the data. 
Perhaps the most common forms are differences in dichotomies, denoted by 
proportions d = p 1  - p z ,  and in similar rates and ratios. We shall use the 
form d = X - F, which avoids subscripts and better symbolizes the more 
general applicability of the design and concepts developed here. 

Net changes and differences d = X - F denote aspects of design where, 
happily, statistics can yield great gains. The variance of (X - J )  can be 
greatly reduced when the pair of variables have high positive correlations R 
in overlapping samples. Furthermore, we now turn to several aspects of great 
flexibility that may be explored in statistical designs for net differences. 

1.  The variances of mean differences are reduced by factors ( 1  - R )  in 
complete overlaps; this is the extreme (with P = I )  of the factors (1 - PR) 
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that may be obtained from partial overlaps. Hence for minimizing 
var(Y - j 7 )  complete overlaps would be best. But partial overlaps are used in 
practice: (a) for reasons of feasibility, to reduce burdens, fatigue, and biases 
of respondents (6.2D and 6.4); and (b) to reduce variances of other statistics 
in multipurpose designs. 

It is simple to think of the variances as (2Sz/n) for differences between 
pairs of samples of size n without overlaps; (2S2/n)(l - R )  with complete 
overlaps, and (2SZ/n)(l - P R )  with partial overlaps P. The S 2 / n  assumes 
simple random sampling and for complex samples the design effects Deft2 
should be included. But for differences and changes the factors Deft2 tend to 
be smaller (closer to 1) than for the means (2.2, 7.1). Therefore reductions 
obtained from overlaps in complex samples, where DeftZ are large for single 
means, may even be considerably greater than indicated by the factors 
(1 - PR) .  

2. We may obtain almost the full reductions of complete overlaps even 
from partial overlaps by using improved estimators of the differences. These 
estimators are useful when circumstances may prevent complete overlaps but 
still permit partial overlaps. In those estimators the overlap portion P gets 
larger weights than the nonoverlap portion 1 - P = Q, by the factor 
l/(l - R ) ,  because elements in the overlap contribute that much less to the 
variance. This improved estimator of the difference is 

d(j - X) = [P(V - X ) p  + Q(1 - R ) ( y  - ?)#I - QR). (6.2.2a) 

Its variance may be expressed, for two srs samples of size n, as: 

(6.2.2 b) 

These effects are shown in Table 6.2.2 with a = (1 - P R )  for the simple 
difference and b = (1  - R)/(1 - QR) for the weighted difference, where 

The factor (1 - R ) / (  1 - Q R )  approaches (1 - R )  for high values of R 
(where most important) and for higher values of P, say P 2 2/3, as seen in 
Table 6.2.2, comparing the last two rows. High values of R are common for 
stable characteristics that can be well measured, but not for volatile, or 
poorly measured, characteristics or attitudes. Negative values of R must be 
rare, but that side of the table with negative values can be used to see what 
happens with sums of two means (X + u)  when the factors are ( I  + P R )  
(6.2B). We also note again (as in paragraph 1 above) that the factors Deft2 
in complex samples may enhance considerably the gains from overlaps, 
because Deft2 are less for the differences. 

Q = I - P .  
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3. Great flexibility can be used in choices of sampling units for the 
overlaps. It is necessary to use elements as sampling units for gross changes 
from panels and they generally yield the highest values of R, hence the lowest 
variances. But they also have great problems (6.2D, 6.4), and therefore in 
many situations larger units, clusters of elements, must be used instead for 
the overlapping units. 

Compact area segments containing several dwellings and their occupants 
have been widely used for overlapping samples [USCB 1978; Kish 1965a, 
9.5, 10.4, 12.5Cl. Identification of dwellings and persons with the segments 
is feasible if well done. Each period’s sample retains its character as a 
probability sample of the population, despite the moves of households, 
families, and individuals; despite births, deaths, and migration the stability of 
area segments remains representative of its inhabitants. It is true that, 
because of those changes and moves by the elements, the correlations R 
between periods are proportionately reduced; but the reduction affects only 
the changing portion. (This is currently around 18 percent yearly in the 
United States.) Hence overlaps based on segments retain most of the 
correlations R for measuring net changes. 

4. The periods of overlapping can be chosen flexibly to reduce variances, 
especially for the comparisons that seem most needed. For example, 
ahc- Cde-Efg-Chi can represent 1 /3 overlaps between succeeding quarters 
and yield good reductions of variances, for high values of R and with 
improved estimators (Tables 6.2.2). Note that half of the sample segments 
(c, e,  g )  is used twice (capitals show repeat appearances) but another half 
(b,  d, f )  only once. Thus 8 of the 12 segments are new each year and they 
contribute more to cumulations. We also learned (6.2A) that 1/3 overlaps are 
useful for estimating current levels. However, we may prefer cumulations 
over four quarters and also overlaps between years; then we can use: 
abc-def-ghi-jkl-Amn-Dop-Gqr-Jst, and so on. For other combinations 
see 6.2E [also Kish 1965a, 10.4, 12.5BI. 

5. In partial overlaps one may also vary the sizes of the nonoverlapping 
portions. While keeping the size of the overlap n, the same for two or more 
surveys, the nonoverlapping portions (n, - nc) ,  (nY - nc), etc., of succes- 
sive periods may differ by design, so as to satisfy diverse purposes (6.5). For 
example, in one extreme (n,  - n , )  = 0, when one entire sample n, = n, is 
added to another (nJJ - nc) for a second period; or contrariwise a subsample 
of n, of the first period may become the entire sample ny = n, for the second 
period. 

6. Greater flexibility may be used in the second and later waves of 
interviewing, or generally in the data collection in the field. The first wave 
must bear the initial costs of selection, contact, cooperation, and some basic, 
core information that later waves may reduce or omit. Therefore in later 
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TABLE 6.2.3. Effects of Diverse Overlaps on Variances of Differences of Means 
(Assumes S: = Sy’= Sz and Deftz = 1) 

Design Types 
Sample Sizes for 
Specific Designs Effects on S Z / n  

~~ ~ ~~~~~ 

A. Partial overlap 
B. Nonoverlap 
C. Complete overlap 
D. Subset 

n = n, = ny, nL = Pn 
n = n, = n y , n ,  = P = 0 
n = n, = ny = n,, P = 1 
n = n , ,  ny = n, = Pn 

2(1 - Pi?) 
2 
2(1 - R) 
(l/P + 1 - 2 R )  

waves the costs per case (element, interview) can be made lower (a little or 
much) than on the first wave. Later waves may sometimes be done by 
different methods, perhaps by telephone or mail instead of personal inter- 
views. This helps to explain the large overlap portions P on surveys, larger 
perhaps than are indicated by variances per case (n). Thus in the Current 
Population Surveys, overlaps of P = 7 / 8  are used, with the last seven of 
eight waves conducted mostly by telephone interviews [USCB 19781. In some 
situations responses may also be better in later waves, but that is a complex 
and difficult subject; there is more on both costs and response in Section 6.4 
on panels. 

7. We avoid derivations in this book, but a simple and brief development 
of the variance 2S2(1 - PR) /n  for two overlapping samples (0 I P I 1) 
appears (7.2B). It is a simple sum of the variances and the covariance of two 
samples. It helps to explain the origin, meaning, limitations, and modifica- 
tions of the simple factors in the last column of Table 6.2.3, which we used so 
often in this section. 

6.2D 

Panels denote samples in which the same elements are measured on two 
or more occasions for the purpose of obtaining individual changes, 
d,  = ( x , ~  - x,,). From a good sample of the di we can estimate the 
distribution of individual changes for the N elements in the population. 
Furthermore, from the mean of these internal changes of individuals we 
can also estimate the net, mean, external change: C ( x I z  - x , , ) / n  = 
C x ,Jn  - C x, , i n  = (2, - XI) .  However, from the net change of means one 
cannot estimate (directly) the gross change of individuals. This duality of 
changes has various names: individual/mean, gross/net, internal/external, 
micro/macro. Panels are sometimes called “strictly longitudinal studies” 
(6.1 A). 

Panels for Gross Changes of Individuals 
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Only panels can reveal the gross changes behind a net change; for 
example, a 2 percent net change of behavior may hide x percent canceling 
changes, where x may be small or large, unknown. Strong models could 
substitute for panel samples in theory, but in reality these exist only for some 
individual variables: age, parity (births) for women; some incurable, chronic 
diseases and infirmities; some acquired and permanent immunities; years of 
education; etc. Sometimes changes can be traced reliably from memory or 
from records. But often models and memory are both lacking and unreliable, 
and only panels can yield the data needed for individual, micro changes. 
These are needed not only for their frequency, but also for the dynamics of 
relationships and causation. 

On the other hand, panels may be too dificult and not feasible for diverse 
reasons (mortality, mobility, refusals) discussed in Sections 6.3 and 6.4. 
Often, however, neither advantages nor disadvantages seem absolute, but 
they should all be weighed against each other. Here we need to clarify 
differences between panels and complete overlaps. Panels define special cases 
of complete overlaps when the sampling units are the elements themselves. 
But sampling units such as area segments used for overlaps differ from panels 
because of mobility and mortality in the population. Overlapping samples 
based on stable area segments can yield good current estimates and net 
changes; they have been so used in many surveys, e.g., the CPS [USCB 19781. 
Area segments are more stable in rural portions, less in cities, and even less 
on their suburban fringes. Such stability (in degree and in time span) also 
describes their value for measuring changes [Kish 1965a, 9.5, 12.5Cl. 

With their unique advantages panels are revealing results undiscovered by 
other methods, but they are not common because of the difficult problems 
associated with their use. Even less common are complete overlaps (P = 1) 
because they would have most of the problems without the completeness of 
panels. Since area segments have fair stability of people in short periods 
(about 82 percent over a year in the United States, 1985), the variance of 
mean (net) change (X2 - XI) is reduced by the factor (1 - R'), where R '  is 
little less than R from panels. Other benefits (lower costs) and some, if any, 
disadvantages (i.e., refusals) are also proportionately inherited. 

6.2E Multipurpose and Combined Periodic Designs 

Most periodic surveys can, should, and do serve several purposes. Current 
estimates and net changes can be readily satisfied jointly using any propor- 
tion of overlaps, and applications are presented below in designs 1, 2, and 4. 
For the other four designs described here (3, 5,6 ,7)  there is need, but no actu- 
al examples, I believe. 
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Cumulations of data can be readily added to either nonoverlaps or partial 
overlaps, but they require special design for spatial spreads (3, 4). The chief 
conflicts come from panels, because panels require special attention. They 
have two problems that conflict with two desirable properties of the other 
samples: first, possible loss of representativeness through attrition, and 
second, loss of cumulation. The compromises of these two conflicts make the 
combinations in designs 6 and 7 especially interesting; these are elaborated in 
Section 6.5. 

1. Partial overlaps can be designed for both current levels and net 
changes. High overlaps are better for net changes, but low overlaps (e.g., 
P = 1/3) are better for current levels and they can be made to yield low 
variances with improved estimators (6.2A2 and Table 6.2.2). But high 
overlaps are often used because of the lower costs of later waves. 

Time series are products of periodic samples but they seem difficult to 
specify as a specific purpose for a special design. Perhaps reducing variances 
for each periodic level and also for net changes seems most important, and 
for both of these reductions partial overlaps seem best. However, if moving 
averages are needed, then cumulations should also be considered to reduce 
their variances. 

2. Multiple partial overlaps can be designed to meet the needs of time 
series for lower variances for specified intervals. The CPS design has P = 7/8 
for successive months and P = 1/2 for yearly intervals [USCB 1978; Kish 
1965a, 10.41; however, it has P = 0 for most other intervals, such as two 
years. It is difficult to foresee and to design optimally and specifically for all 
the comparisons that will be needed. Perhaps a permanent partial overlap may 
be tried (see SPD in 6.5 below). 

3. Cumulative partial overlaps refers to possible modifications where the 
nonoverlapping portions would be deliberately designed to cumulate to 
broader and better spatial spreads along with temporal cumulations. These 
then also represent modifications of the time x space matrix idea (6.lC) 
to partial overlaps. Spatial cumulations for small domains may become 
important objectives for periodic surveys. 

4 .  Cumulated reference periods could provide more precise current levels, 
though at longer reporting intervals. These could be combined with overlaps 
between those intervals. But within the intervals the reference periods would 
be cumulated without overlaps and perhaps with increased spatial spread for 
lower variances. For example, monthly reference (and collection) periods 
with P = 1/3 between quarterly reporting periods can be represented by: 
Iaaa-bbb-ccc(Add-Bee-C$I Dgg-Ehh-Fiil, with each (quarter1 including 
three monthly surveys, each with three thirds, like aaa. It would be possible, 
of course, to compute monthly levels, but the design optimizes for reporting 
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both the current levels and the net changes for quarterly data. Yearly overlaps 
can also be added [Dahlstrom, Jos, and Wahlstrom 1973; Kish 19861. 

5. Panels spliced with overlaps have been used and described in several 
surveys to solve conflict between these two designs. Complete overlaps of 
area segments were needed to assure representative samples of voters for 
both periods despite changes in the segments’ populations (about 35 percent 
over two years). However, panels were also needed for data on gross changes 
in voters, and the movers’were followed. Thus the design covered two 
samples in which about 65 percent was common to both [Hess 19841. 

6. Split-panel designs ( S P D )  would incorporate two separate designs that 
have conflicting properties, advantages, and faults. A portion, say P = 114 
or 1/3, would be for a panel for individual changes; it would also provide 
overlaps and thus reduce variances for mean changes and for current levels, 
with correlations ( R )  with all periods. The other portions (1 - P) would 
provide nonoverlapping samples to permit cumulation; hence they should 
have increased spread for cumulating periods. The two sample designs could 
be quite distinct to suit efficiently the needs of each. But the measurements 
would need to be similar to permit the combination of the two sets of results 
into single series of statistics (6.5). 

7. Rolling andpanel designs would extend the SPD above: the cumulation 
of the nonoverlapping portion would be designed to become a rolling sample 
census of all spatial domains of the population (6.5). 

6.2F Master Frames and Master Samples 

It would be difficult to imagine periodic samples selected without the prior 
existence or the creation of master frames. Needed also for nonoverlapping 
samples, they become even more important for cumulations, especially for 
samples “rolling” over the entire spatial extent. They can yield many kinds of 
auxiliary data for improving the periodic samples, the improvement depend- 
ing greatly on specific situations. The nature of frames, the quality and 
quantity of information in them, their availability and utility vary too much 
for a useful summary here. The term may refer to a collection of maps and 
ancillary data for either the entire population or a large selection of primary 
sampling units; these serve as frames for selecting needed samples. Or with 
further work a large sample (lists of segments or households) may be selected 
in an initial first phase, and then the actual samples for each new survey may 
be selected as needed from those lists already prepared. A “master sample” 
may actually contain personal data obtained in first-phase interviews, to be 
subselected for second-phase surveys [Kish 1965a, 12.6A; Wright and Tsao, 
19831. 
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6.3 CHANGING AND MOBILE POPULATIONS 

6.3A 

Whenever we want to separate the factors (predictors) responsible for 
changes in effects (predictands), we encounter possible or actual dis- 
turbances, “noises,” from a bewildering variety of other factors. Several of 
these factors also may be affecting the predictands, some accentuating the 
effects and some masking them perhaps. There exist so many possible factors 
that to list all of them appears unfeasible. I believe, however, that we may 
find the following four potential sources (kinds) of change useful for bringing 
some order to the multitude of possible factors. (See also the biases TI to T4 
in 3.5.) 

For any study some factor from one of these sources will appear as the 
principal objective, and the other three sources become disturbing factors, 
potential or actual. When any disturbing sources, or factors therein, seem 
important, they must be brought under control with statistical methods, 
either in the design, in the analysis, or with field or  office procedures. This 
separation of explanatory factors from disturbing sources is useful to the 
extent that researchers can apply it to their own research situations. We 
may add that in  two separate analyses of the same set of data, first one 
source then another may become the objectives and predictors; with 
each effort the residual three sources become the disturbing sources to be 
controlled. 

Any profound treatment would lead us into the methods and philosophy 
of some specific substantive field of research, and I cannot provide a good 
bibliography because the references are scattered across many fields. On the 
other hand, this brief list of sources can serve to remind us of the disturbing 
factors so that the statistical design can be shaped to control them. See also 
another classification from a different aspect in Section 6.6C. 

Four Competing Sources of Changes Over Time 

A l .  Internal sources refer to changes within individuals that occur naturally 
and usually gradually. Aging, growing, and learning are examples of changes 
that tend to come gradually without outside intervention. These processes 
are usually related to each other, but not at all perfectly, and we need to deal 
with each of them separately. Aging refers to processes that are automatic, 
unpreventable, and irreversible, and they take different forms for diverse 
elements to which we may want to generalize. Growing refers to changes in 
size and shape of elements; it is quite different, not at all automatic or 
irreversible, and may be negative. Growing is not entirely autonomous and 
internal, and may be affected by external influences (A2), but still it refers to 
internal effects. Learning deserves a separate name, though related to growth 
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in a general sense; it is affected by external factors (A2), and possibly by the 
treatments (A4) through experimental contamination, or even by the 
procedures of measurements (A3). Negative forms of learning can be the 
effects of the study itself; they may be called tiring and fatigue or resistance 
and refusals. These are well-known dangers of repeated, longitudinal 
measurements, and they are affected by the measurement (A3) and the 
treatments (A4). 

A2.  External or environmental sources affect the elements from the outside, 
affect all or many of them jointly and often somewhat similarly; the effects on 
the elements are often relatively abrupt and simultaneous. Historical events 
come to mind, and usually disasters like wars or epidemics; but abrupt news 
may also be good, like a war’s end or discovery of a new cure. External events 
may also be gradual and show other confusions with internal sources, but the 
broad distinction seems useful for hunting and listing disturbing factors. Let 
us be reminded again that an external event may be either the principal study 
objective or a disturbing factor to be controlled. 

The age-period-cohort confusion has received attention recently in 
demography [Fienberg and Mason 1979, Rodgers 19821. Cohort analysis 
follows a population (either in aggregate statistics or individually) of the 
same age, as its age increases regularly with successive periods. The contrast 
of age and period effects may represent internal (Al) versus external (A2) 
factors. 

A3. Instrumental change in the procedures of measurement or observation 
may be a source of disturbing factors that need to be controlled, prevented, 
or reduced. Unplanned changes or drift in the measurement procedures may 
be a disturbing factor that can cause annoying surprise or (even worse) 
remain undetected. However, sometimes instrumental changes may represent 
the principal objectiws of a study for comparing different methods or 
instruments of measurement between two (or more) waves, perhaps over the 
same population; and then the other three sources can present disturbing 
factors. Instrumental changes usually occur in the sample only, and this may 
also be true of A4; whereas the internal and external changes noted in A1 and 
A2 affect the population. 

A4. Deliberate interventions and new treatments are likely to be the 
principal objectives of evaluation studies (3.7). They may originate in new 
laws; in innovations, inventions, or changes; or in experimental treatments. 
However, they may also appear as disturbing factors in studies of growth and 
learning, for example. Confusions with other external sources (A2) may 
arise, hence the distinction seems practically useful. 
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6.3B Mobility and Changes of Populations 

The topic of mobility and changes of populations, like the preceding one, 
needs this systematic, joint treatment to avoid confusion (common for panels 
and for partial overlaps) between various sources of change in samples and in 
populations. These problems receive occasional and separate treatments, but 
a joint heuristic basis may reveal common features, which occur because the 
elements of the populations can move, appear and disappear, or change 
between (or during) the periods of the studies. Mobility and changes can be 
common and frequent for persons (and animals); even more so for families, 
groups, and institutions; but less so for dwellings and for geographical 
and geological features. The diverse kinds of mobility across boundaries 
of populations, as well as of sampling units, cause problems of location, 
definition, and identification for methods based on area frames. Other 
frames also can have analogous problems: People move into or out of 
schools, firms, institutions, groups, etc. 

BI. Three Components of Population Change: Changed Boundaries, Migra- 
tion, Changing Elements. These three components of change interact over 
time in the definition of the population-of a city, institution, organization, 
etc. Suppose, for example, that we study behavioral changes in the inhabi- 
tants of a city between two samples or censuses 10 years apart. In that period 
the city has expanded its legal limits, and, perhaps even more, its pattern of 
settlement. Thus four alternative limits-old or new, legal or social-can be 
used for defining the population limits. Meanwhile large immigrations of 
different social and ethnic groups could have occurred. The movements of 
boundaries and of people are disturbing factors for studies of changes within 
populations (which could be already complicated by age-period-cohort 
problems). For studies of any of the three components the other two appear 
as disturbing factors (6.6C). 

Analogous problems of definitions appear in other populations. Changed 
national boundaries can interfere with historical comparisons, but they are 
less permeable and ephemeral than internal boundaries. Boundaries and 
limits other than geographical can be faced with analogous problems of 
definition; money values (e.g., income classes) need adjustments to some 
common “real” base; definitions of social standards (e.g., poverty level) often 
need realignments. 

B2. Changes Within Complex Elements. Identification of elements, can 
become difficult when these are complex units, such as groups, organizations. 
Persons remain identifiable over periods-with the aid of biological 
homeostasis; but identification of families is complicated by marriage, 
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divorce, migration, births, and deaths of its individual members [Duncan 
19841. Studies over time of firms, organizations, and institutions are difficult 
(though not impossible) but worthwhile. Their forms of homeostasis differ 
from that of persons. On the other hand, studies confined to their nonchang- 
ing portions would yield biased pictures of the whole population. 

83. Populations of Events. A probability selection of persons may be made 
too difficult in some situations by their mobility; sometimes, however, a 
solution may be found by redefining the problem and the statistics in terms of 
a population of events instead. For example, studies of customers of stores, 
users of libraries, patients of doctors, clients of lawyers, shareholders of 
companies have been substituted for samples of persons behind those events. 
The estimates can account for the knowledge that several events could belong 
to any person. Not only persons but other mobile biological, physical, or 
other elements may be similarly redefined in terms of events, appearances. 
For samples of airplane passengers the ‘‘legs’’ (stops) of flights may be the 
events to be counted. 

If the number of events (ei) can be obtained for each person (element) in 
the sample, by weighting with l /ei  the statistics can be recomputed for a 
population of persons [Kish 1965a, 1 1.2CI. (For related problems see 7.4B, 
7.5.) 

B4. Conflicts of Location Versus Allocution. This is an attempt to cover with 
heuristic unity a variety of problems that arise because the location of mobile 
elements at the time of collection (of a census or sample) differs from a 
desired (proper) allocation. 

a .  Dwellings of usual residence are commonly used by censuses and 
sample surveys for unique association of persons and of families. They have 
been found to be remarkably useful for women in diverse cultures through- 
out the world by the World Fertility Surveys [Verma et al. 19801. Neverthe- 
less serious problems remain and their solutions, often imperfect, depend on 
specific situations and resources. They are often discussed [e.g., Kish 1965a, 
9.11, and here we only note some of the most frequent problems. Persons 
away from their residences at collection time pose problems. Callbacks may 
be expensive and delay completion of collection. Data from others, from 
proxies, may be poor, or not acceptable (for attitudes). Collecting data from 
persons who are found distant from their dwellings raises problems of 
identification and duplication. Travelers, tourists, and vacationers represent 
three types of populations to be studied in motion, away from their 
dwellings. These studies may be sometimes better accomplished with a 
redefinition to a population of events. 
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b. Nonhousehold populations, i.e., persons not in dwellings, take diverse 
forms and receive diverse treatments. They may be in institutions like 
schools, hospitals, prisons, or military installations. They may live in 
transient hotels, boarding houses, or camps; in trailers, mobile homes, or 
autos; or on streets or nowhere. They do not form a random population 
subset, but tend to be male and young, often poor but sometimes rich. They 
may be omitted in small samples, or covered with special methods in large 
samples and in censuses. 

c. Nomads and migrants constitute specific populations and large, special 
problems in some situations. Nomads generally move in families or tribes 
and often in some regular, cyclical, or seasonal manner, but often in diverse 
patterns. Migrant workers often move as individuals, sometimes in families, 
seldom in large groups; but often in large numbers and in irregular and 
shifting ways. References exist on surveys and censuses of nomads [UN 
19771. 

d. De facto and de jure allocation are terms given by census offices facing a 
dilemma between two alternative procedures: defacto for locating persons at 
the actual sites of enumeration and dejure for locating them at their usual 
residences. Each has problems and these vary with situations and resources 
and they differ for diverse populations. Institutionalized populations (such 
as students in dormitories) may be counted de facto at the institutions 
(universities) or dejure at their home residences. Hospitals are the actual sites 
of births, deaths, and illnesses, but allocating the patients to them would 
result in distorted vital and health statistics. Travelers and vacationers may be 
noted here again as problems of allocation. Working or daytime populations 
of central cities, and of other specialized worksites (mines, harbors, fac- 
tories), pose problems for service statistics, when residences and workplaces 
are separated. 

e. Exclusive units for unique appearances can be used for locating persons 
and other mobile units. A simple version of this is the census procedure of 
using a single reference date for uniquely locating a person moving during 
the collection interval. A more complex version may be needed for mobile 
elements such as nomads and migrants and for wildlife and other mobile 
elements. Suppose the elements must be allocated de fucto to the site where 
found at the time of enumeration; suppose also that the enumeration must be 
spread over a longer interval; suppose also that the elements move, migrate in 
an unpredictable and probably not strictly random manner. It is still possible 
to obtain a sample in which every element has a known expectation of 
appearance, hence unbiased estimates, although the appearance becomes a 
random variable. We need to assume that at any one time the element can be 
identified in one and only one unit at any time during the collection interval 
and that a probability sample of these units (often area segments) is selected. 
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If the overall selection probability of the units isf, the expected appearance 
of any element is also .fi hence dividing by ,f produces unbiased population 
totals. Any element may appear 0, 1,2, . . . , k times, where k is the number of 
“times” in the total interval. The time may be a day (for nomads) or shorter. 
Duplicate appearances are accepted, but they are rare, except for very large 
sampling fractions and very mobile populations, i.e., large k over the 
interval. Withf = 1 we would have a “census” but of a variable size. 

6.4 PANEL EFFECTS 

Panel studies possess dual aspects and functions. On the one hand, a panel 
study of k periods can be compared with k distinct samples, and this 
comparison is more basic (6.2). Thus a sample of n elements (households or 
persons) may be observed in k periods for a panel, compared with a total of 
kn elements in k nonoverlapping periodic samples of n each. The costs per 
interview are somewhat cheaper for a panel. This comparison of relative 
costs of the two sampling methods for obtaining “static” information in k 
periodic samples is seldom made, but outlined in 6.4A [Freedman, Thornton, 
Camburn 1980; Duncan 19841. 

On the other hand, there are interesting comparisons, chiefly in epi- 
demiology, of retrospective studies versus prospective studies, each confined 
to one sample. In retrospective studies memory and records are used to 
retrieve the needed longitudinal information. These comparisons are out- 
lined in 6.4B, and they differ greatly in assumptions and in costs from the first 
comparison in 6.4A. But the costs per element are much higher for the 
prospective panels than for retrospective studies of only n elements. 

6.4A Panels Versus Distinct Samples 

1 .  Initial seljhelrctions. Any sample of humans probably involves some form 
and some amount of volunteering, hence self-selection, hence potential bias 
in representation. These are all motivational factors and their effects vary so 
widely that no quantitative guidelines seem possible. However, it has been 
noted often that the rate of refusals is increased considerably when 
respondents are asked for cooperation in a long-continued panel after the 
first call. 

2 .  Attrition continues after the first call, but at a much reduced rate. This 
attrition has two forms: refusals due to “panel fatigue” and nonresponses 
due to disappearances that cannot be traced. We distinguish these from 
losses due to temporary nonresponse, to mortality, to changes, and to 
mobility, all of which are treated separately. The refusal at the first call may 
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be, let us say, as high as 20 percent, but the attrition after that may be as low 
as 1 or 2 percent on each call. Nevertheless, these small losses can also 
accumulate to a sizable total after many periods. But these effects are 
extremely variable; and fatigue and refusals are much less in rural and in less 
developed areas (see 14 below). 

3. Ternporary nonresponse, either not-at-home or refusal, may be con- 
siderably higher than attrition; say 3-6 percent versus 1- 2 percent, depend- 
ing greatly on timing and kind of procedures. Hence they must be included in 
later calls, and their data interpolated with retrospection and with 
imputation. 

4. Mobility must be treated distinctly from inevitable attrition. First, 
mobility may be much greater than attrition, depending on the population 
and on the time interval covered; hence losses could accumulate to prohibi- 
tive levels. Second, they can be reduced or eliminated (almost) with enough 
care, effort, ingenuity; and the literature conveys much good advice, specific 
to the situation but translatable to others. Mobility has entirely different 
effects on panels than on overlapping sampling units, such as area segments, 
which are self-correcting and reflect (in expectation) the changing popu- 
lation. Longitudinal studies of restricted sites with permeable borders, such 
as a single area, will reflect great mobility (3.1A). 

5. Chunges of the elements can be considerable for complex units, like 
families, groups, organizations, institutions, firms. Dealing with them in a 
panel requires much skill, knowledge, and experience. Such changes gener- 
ally reflect similar changes in the population, as does mortality. 

6. Mortality affects the entire population, and its treatment would be 
different and simpler for a study defined by and confined to the initial sample 
and population. Within that definition the panels suffer no special defects, as 
compared with changing samples, either from mortality, from other forms of 
outmigration, or from changing elements (6.3). That is why we separate the 
panel effects of changes, mortality, and births (5 ,  6, and 7), from attrition 
and other specific defects of panels (1, 2, 3, 4). 

7. Births and immigration should be introduced into longitudinal studies 
defined by ever-changing, living, and complete populations, with births into 
as well as deaths from them. They must include some method for introducing 
births and migration, in contrast to studies confined to the initial population 
(6 above) and in contrast with nonpanel methods defined by stable units, 
such as area segments, even in overlapping samples. 

8. Retest reuctivity, panel bias, panel contamination, sensitizing, or 
learning are all names given to the fear that the experience of past interviews 
(observations, enumerations) and the anticipation of future ones will change 
the behavior and attitudes, opinions of the individuals in the sample. I 
cannot say anything useful on this deep and controversial topic, except that 
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there is little information on effects in contrast with widespread extravagant 
fears. Any effects would depend on many factors involving the nature and 
timing of observations, of the study variables, and of the population. (See 
item 14 for positive effects.) 

9. Reinterview laxity has been raised as a possible source of bias: that both 
the respondent and the interviewer may be subject to inertia and to similarity 
of the answers, which probably they must (unintentionally) recollect from 
past interviews. Interviewers may also become somewhat less careful gener- 
ally on return visits. The “rotating group bias” of the Current Population 
Surveys is the best-known example, though a rather confusing problem 
[USCB 19781. On the contrary, we also present (in item 14) arguments in 
favor of the familiarity gained in panels. 

10. Checks and controls are desirable to guard against possible biases 
from the use of panels. These can take so many forms and are so dependent 
on specific situations that listing them here seems futile. Checks can generally 
be of two kinds: comparisons with available background variables, such as 
age and sex, and of the study variables that are more critical but also more 
difficult to validate. Perhaps best would be a comparison of each wave with a 
new changing sample; this is a feature of Split Panel Designs (6.5). However, 
it would be wrong to assume that any difference between panels and new 
samples measures biases in panels, only because we are less familiar with 
them! (See items 12, 13 and 14.) 

Methods for controls and corrections can be analytical with some form of 
weighting or with imputation, which may be easier, but they can complicate 
later analysis. It would be more difficult to arrange, but also ultimately more 
useful to “correct” the sample for panel losses with supplements of the 
missing types; but such supplements of new members will lack the desired 
history of the panel cases. 

Fortunately, after those 10 possible defects we come to four possible and 
considerable benefits of panels; three of these advantages (12, 13, 14) are also 
shared in good portion by overlapping sampling units. 

1 I .  Only panels yield data on individual changes, as discussed in 6.2D. 
12. Lower costs per interview than those for changing, nonoverlapping 

samples are common, in spite of the widespread hostility to panels. First, 
only the first wave bears the sampling costs, both in the office selection and 
designation and in the field work of identification and gaining access and 
cooperation. Second, the basic background data concerning individuals 
(“face sheet data”) are borne mostly or are more costly in the first wave. 
Third, acquaintance with the unit (household) facilitates contact; for 
example, the timing of calls (interviews). Fourth (and this is most variable), 
later calls can cost much less, if done by telephone, mail, or some other 
cheaper procedure, on all or on most of the sample, when this seems not 
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feasible for the first wave. (This in my view is the chief, though largely 
neglected, reason for the large overlaps in some current labor force surveys.) 

13. Errors removed or reduced can be a considerable advantage of panels, 
if procedures are introduced to check for differences and for consistency. 

14. Familiarity with the sampling units and with the individuals can often 
have positive results, in contrast to the negative and feared effects of attrition 
( 2 ) ,  reactivity (8), and laxity (9). For demographic surveys in developing 
countries it has been noted that, 

The survey staff will master their duties better and learn to know the sample 
areas and even the population. For their part the respondents, meeting 
interviewers they already know, become more relaxed and willing to answer 
questions. It has been reported in several surveys which have lasted three or 
more years that initial suspicion and reserve have with repeat visits given way 
to trust and the interviewers have been received with pleasure as old friends 
(Cantrelle 1974; Nepal 1976; Iran 1978). [Kannisto 1983; UN 19841 

6.4B Prospective Panels Versus Retrospective Studies 

This contrast differs greatly from the contrast in 6.4A of a panel with a 
similar total number of visits. Here instead, the use, value, and cost of a panel 
of several waves are contrasted with a one-wave study, which depends on 
retrospective recollection of data over time. This contrast is best developed in 
the literature of epidemiology and public health as “retrospective” versus 
“prospective” studies of diseases and risks [Cornfield 1956; Cornfield and 
Haenzel 1960; Rerkson and Elveback 1960; Greenberg 19691. Other resear- 
chers can profit from these and from a rich source of further references 
therein. 

The two kinds of contrasts give extremely different views. This is especially 
true of costs, because panels seem less costly per interview than a similar 
number of new waves, but prospective panels are much more costly per 
individual than a one-time retrospective study. Between these two extremes 
of contrasts other comparisons and compromises are possible and my two 
listings of panel effects may help the readers to fit their own situations. We 
may also think of a prospective panel of several waves and each collecting 
not only current data, but also retrospective data; we may also think of 
panels newly started with each wave and then followed prospectively. These 
models yield rich data, but are expensive [Bachman and Johnston 19781. We 
now turn to a listing of the problems of prospective panels that lead often to 
using retrospective studies (1, 2 ,  3, 4), followed by the doubts inherent in their 
use (5, 6,7, 8). 
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1. Higher costs. Panels of several waves are bound to incur considerably 
higher costs than a retrospective study of single observations (interviewers) 
on a similar number of individuals. A simple model for panel costs per 
individual would be C + wf, where C refers to contact costs of selection, 
identification, acquaintance, and basic background data (6.4A. 12) and f 
refers to follow-up costs for each of the w waves. For a retrospective study 
the cost per individual is only C + r ,  let us say, where r > f, for a longer 
interview. We may say that C + r < C + wf  < w ( C  + r )  and that retro- 
spective studies cost less than panels, especially as the number of waves w 
increase, though not by the factor w. 

In a situation with a small number w of waves, and when the contact costs 
C are larger than f, the cost difference may not be overwhelming. Fur- 
thermore, the size of the panel may be decreased by a factor d; then 
C + r = (C + wf)/ddescribes the decrease d in  relative sample size needed 
for a panel of w waves, to bring it down to the cost of a retrospective study. 

2. Rare events. Prospective studies of panels with several (many) waves 
can become especially expensive when the proportions of “susceptibles,” 
( X / T ) ,  or of “diseased” (D/T) ,  and especially of “susceptibles with disease” 
( X D / T )  are small. (See Figure 6.4.1 for symbols.) This common situation 
would require following a large total sample T chiefly to find eventually a 
small proportion XD/X among the susceptibles (who may themselves be 
infrequent) and probably a smaller proportion OD/O among the resistants. 

This situation leads to the use of retrospective studies where D diseased 
individuals and H healthy are found first, and then through investigation 
both are classified into susceptibles and resistants: the D into X D  and OD, the 
H into X H  and OH.  Thus in retrospective studies we find cases with effects 
(responses) and then investigate them retrospectively for causal factors 
(stimuli). This retrospective, backward path to causation is subject to the 
criticism and to the cautions referenced earlier. 

When searching for causal factors, the most desired statistic may be the 
ratio pJpo = (XD/x)/(OD/O). For example, the ratio of lung cancer rates 
among cigarette smokers is about 15 times that rate among nonsmokers. 
Since po in the denominator should not be so small as to induce instability in 
the ratio, it may be wiser to usepo/px whenp, is too small and less stable than 

When, however, we would estimate the magnitude of explanatory effects, 
it may be better to use the difference d = p x  - p ,  = ( X D / X )  - (OD/O).  
For example, the difference in death rates from hypertension between 
cigarette smokers and nonsmokers shows more clearly the importance of that 
effect among all death rates than the ratio px/po. The magnitude of effects in 
numbers of deaths will be N,d, with the difference in rates d “explained” by 
cigarettes multiplied by the number of smokers N,. 

Px (4.7). 



180 6. SAMPLE DESIGNS OVER TIME 

Retrospective Retrospective 

Figure 6.4.1. Prospective versus retrospective studies. 
a. In prospective studies researchers follow two samples X and 0 to divide them into 

X = X D  + XH and 0 = O D  + O H .  The X I 0  distinction may denote positive/negative 
screening, t / - , or treatment/control, E/O, susceptible/resistant, etc. The D / H  split may denote 
diseased/healthy, or affected/unaffected; p / ( l  - p ) .  with symptom/symptom-free, etc. In med- 
ical screenings the X H  are called “false positives” and the O D  “false negatives.” In retrospective 
studies the researcher finds two samples D and H ,  and divides these into D = X D  + O D  and 
H = XH + O H  (on the basis of retrospective interviews, tests, diagnoses, etc.). In surveys the 
entire sample of T is split into the four cells and the analysis may go either way. Note that the 
“odds ratios” of prospective and retrospective studies are numerically equal, because 
( X D / X H ) / ( O D / O H )  = ( X D  x O H ) / ( X H  x O D )  = ( X D / O D ) / ( X H / O H ) .  However, such 
equality does not hold generally for the differences of those ratios, (XDIXH)  - (OD/OH) + 
( X D j O D )  - ( X H / O H )  nor for the proportions (XDIX)  - ( O D j O )  4 ( X D / D )  - ( X H / H ) .  In 
addition to those numerical problems, often grave differences also exist between prospective and 
retrospective studies and surveys in representation, selection, and response. 

b. This diagram portrays a common situation: the positives are in minority X c D, 
and among them the “false positives” are fewer XH < X D ;  and “false negatives” are also 
a minority OD < OH. The size of the association shown is uncommonly strong, with the 
odds ratio ( X D / X H ) / ( O D / O H )  = (16/4)/(16/64)= (4/1)/(1/4) = 16; lung cancer rates for 
cigdrettes/nonsmokers are about this strong. Note that the weakest link is the X H  = 4 “false 
positives: in the denominator. I f  this were based on four cases out of N = 100, the ratio would 
be most unstable. The difference in the two prospective proportions is 30 - .20 = .60 and tor 
retrospective S O  - .07 = .43. 

The simple dichotomies can be extended to polytomies and to continuous 
variables. Furthermore, several explanatory variables, and especially con- 
trols for disturbing variables, may be introduced. 

3. Delayed results. This may often be the principal reason for using 
retrospective studies, instead of waiting for years or decades, which the full 
unfolding of a prospective panel would require. It may be possible sometimes 



6.5 SPLIT-PANEL DESIGNS 181 

to do a retrospective study soon and then to begin a prospective long-range 
project to allay eventually the doubts from the former (6, 7, 8). 

4. Punel fatigue, bias, mortality. These problems have been treated in 
detail in 6.4A, but we may note that mortality and other selection biases are 
likely to be greater in retrospective than in prospective studies (7). 

5. Luck of randomization. Random assignment of treatments seldom 
seems feasible, and often probability selection of individuals is also too 
expensive. However, it would be unreasonable to hold these imperfections 
against prospective panels, since these factors are likely to face greater 
hazards and doubts in  retrospective studies. 

6. Biases of memory, recall, retrieval. These cover the principal objections 
to retrospective studies, and much is written about them (6.1C.l). 

7. Mortality biases. These refer to biases in the population arising from 
possible differential mortality (and other losses from attrition) between 
affected (D) and unaffected ( H )  individuals, within both causal classes ( X  and 
0). These biases may have greater effects in retrospective studies, because 
they may be traced in prospective panels. 

8.  Selection biases. In addition to biases in the population, retrospective 
studies may suffer more from selection biases. To find affected (D) cases 
when these are rare and to find small classes of susceptibles ( X ) ,  probability 
sampling may seem too expensive, and judgment sampling may be used. 
Statistical inferences will be subject to doubts, though biases in the ratios and 
differences will be less serious than in first-order results. 

6.5 SPLIT-PANEL DESIGNS 

With the name split-panel designs (SPD) I hope to distinguish this new type 
of design from older designs with which it could be confused. It is not one of 
the four basic designs (panels, overlaps, nonoverlaps, partial overlaps) of 
Section 6.2. SPD includes a combination that performs all four purposes and 
some new functions in addition. Hence the new name I gave to this new type 
of design should help to avoid confusing it with older and better-known 
designs. 

1. The basic notion is simply to add to a panel p a parallel series of 
nonoverlapping samples, denoted as a-b-c-d-etc. Thus the periodic SPD may 
be symbolized as pa-pb-pc-pd. The panel p yields individual changes, the 
nonoverlaps a-b-c-d can be cumulated into larger samples; and the combined 
sample provides the partial overlaps best for current estimates and for net 
changes. This combined use is the main feature of SPD; methodological 
comparisons and checks of the panel against the changing samples are side 
benefits. 
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Nevertheless, the sample designs for p and for a-6-c-d- can be separate and 
distinct, each “optimized” for its own uses; this does not prevent their 
combined use as one sample. But the populations covered and the measure- 
ments used must be closely similar for the combinations. 

2. The differences from the classical, symmetrical methods of partial 
overlaps and the advantages of SPD over them deserve primary emphasis. 
The classical designs of partial overlaps have the elegance and appeal (usual 
and often misleading) of symmetry: Each sample group is in the sample for a 
similar pattern of waves. (The simplest is ub-bc-cd-de.. . .) No individual 
becomes any more fatigued than any other-but also no less. For measuring 
changes it provides the gains (often considerable) for those intervals that 
have been prespecified in the design: for example, monthly changes or yearly 
changes. But only for those! 

However, my reading of actual situations tells me that critical com- 
parisons will probably be discovered for later waves that differ from the 
intervals specified at the time of the original design. SPD has overlaps ofp for 
all intervals between waves, and this feature gives SPD considerable 
advantage over classical, symmetrical designs for measuring net changes. 
Another advantage of SPD over partial overlaps of sampling units comes 
from the higher correlations of the same elements when these are subject to 
great mobility between units. 

3. For measuring current (static) levels also, in the gains from partial 
overlaps, SPD has some advantages over classical symmetrical designs, 
though not great, clear, and uniform. Briefly, in symmetrical designs the 
prespecified overlaps (which may be designed primarily for measuring net 
changes) may not have the interval with the highest correlations, R; for 
example, the overlaps may be yearly, but highest R’s may come monthly. On 
the other hand, SPD has overlaps for all waves. Furthermore, the weights 
may be “optimized” for maximal R for each variate. 

4. The chief difference and the principal advantage of SPD comes from 
having a proper panel that classical rotations lack. Panels are necessary for 
measuring individual changes, but they also have unique problems (6.2D). 
Hence they may be called either indispensable or impossible. But SPD also has a 
great advantage over a complete panel: It allows for cumulated evidence to 
check against and perhaps correct the biases to which panels may be subject 
(6.2D, 6.4A). Similar checks can also be made in partially overlapping 
samples. Another advantage of SPD over ordinary panels comes from the 
possibility of using the changing samples to recruit replacements for panel 
mortality and for panel renewals. 

5. If a “permanent” panel is not feasible or desirable it may be modified in 
several ways and still retain some or most of the advantages. For example, a 
modest and slow rotation may be built into it so that most of the variance 
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reductions from correlations are retained, and so as to minimize the loss of 
panel information. Perhaps as measures against panel fatigue or deteriora- 
tion it may be possible to introduce complicated designs so that only parts of 
the panel appear in each wave. 

6. If panels of individuals, following moving individuals, are ruled to be 
not feasible or inadmissible, most of the gains enumerated previously can still 
be retained, with the portion p becoming a complete overlap of sampling 
units, for example, of area segments. Some of the correlation may be lost due 
to mobile elements. 

7. The relative sizes of p against the a-b-c-d . . . portions depend on 
feasibilities and costs. In favor of a large p are the valuable data on individual 
changes, greater precision for net (mean) changes, and perhaps lower cost per 
interview, especially with telephone interviews. At one extreme only small 
changing samples would be retained to serve for methodological checks and 
controls and for recruiting replacements. 

On the other hand, low values of p (about 1/3) are better for current 
(static) levels; also to reduce panel biases and problems. The gains in 
variances in complex estimates for current levels and for net changes (6.2A 
and C) are not very sensitive, and portions of p between 1/4 and 1/2 are all 
fairly good; that is, the a-6-c-d . . . changing portions may be anywhere from 
p to 3p. Furthermore, for cumulating cases we want to increase the new cases, 
the sizes of a-b-c-d . . . , and hence to decrease the relative size of the panel p .  

8. Thus another advantage of SPD may be its flexibility in the sizes of 
a-b-c-d . . ., the changing samples, which are fixed in rigid, symmetrical, 
classical designs. In SPD these sizes can be varied from wave to wave in order 
to fit changing budgets and changing needs. Of course, such changes would 
raise weighting problems for cumulated estimates, but they can be solved (6.6E). 

6.6 
SAMPLES 

CUMULATING CASES AND COMBINING STATISTICS FROM 

6.6A Stages for Pooling 

Combinations can take place at any of four successive stages of preparation, 
and the title aims to distinguish the first two. Methods will be discussed later 
for these first two, perhaps “pooling” or “aggregating” can refer jointly to 
both; but for numbers 3 and 4 only references to the literature are given here. 
Data from repeated samples for the same or similar variables and popu- 
lations are becoming more common and available, hence methods for 
combining or cumulating those data are becoming of wider interest. 

1. Cumulating cases can refer to aggregating, summing, amassing 
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individual elements from repeated surveys. This has been practiced without 
much theory on periodic surveys, and the 52 weekly samples of 1000 
households each have been designed for cumulation by the National Center 
for Health Statisrics [NCHS 19581. Other examples are rolling samples and 
multiround samples mentioned elsewhere. However, individual cases can 
be and have been cumulated also from samples that have been designed 
and collected quite separately from each other. 

2. Combining statistics from published results can be done for surveys and 
for experiments carried out in diverse places and at different times. Means, 
rates, percentages, totals have been averaged. Analysis of the Results of a 
Series of Experiments [Cochran and Cox 19501 is an early reference for 
combining experiments. Combining statistics from surveys is discussed later. 

3. Combinations of probabilities from a group of related experiments can 
be done by a method due to R A Fisher. The probabilities P, from k 
separate and independent tests of the same hypothesis, with each of the k 
values of P, based on a 2 x 2 chi-square test, can be combined into 
u = -2Clog,P,, which has a chi-square distribution with 2k degrees of 
freedom [Anderson and Bancroft 1952, 12.61. 

4. Meta-analysis ojresearch is the name of a field of methods, originated 
recently [Glass 19761 and mostly in the fields of education, evaluations, and 
social psychology and not much in statistics until recently [Hedges and Olkin 
19861. The methods concern combining disparate research results on some 
single substantive hypothesis or theory, and they seem to range from a 
systematic qualitative review of research all the way to combining statistical 
results. They deal mostly and in detail with problems of measurement, 
concepts and theory, but less with statistics. A review of 36 articles by R J 
Light [ 19831 provides many more references. Summaries of research have 
been done before [e.g., Gilbert, Light, and Mosteller 19751. 

6.6B Purposes for Cumulations and Combinations 

I distinguish three general reasons either for cumulating cases or  for 
combining statistics, but the first purpose seems more suited for cumulating. 
For other purposes for repeated surveys we refer to Section 6.2. 

1. Larger samples for domains, especially for small domains and even for 
rare cases, are needed, both for proper domains (like areas) and for 
crossclasses (see 2.3 for these types). These needs occur in all national 
samples and other large-scale research; sample sizes are limited, whereas 
interest in details seems unlimited. On the other hand, specific designs for 
meeting these needs with periodic surveys are few, though, one hopes, 
increasing. The yearly cumulations of the weekly samples of 1000 households 
each in the National Health Survey [NCHS 19581 may be the best example. 
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Larger bases for domains have motivated the pooling of polling data [Miller 
19831: “British academics . , . have made increasing use of cumulated media 
poll data to get access to large samples even if they had to be second-hand 
samples” [Bonham 1954; Butler and Stokes 1974; Harrop 1980; Rose 19801. 

Rolling samples for all small administrative units would be an extreme case 
of small domains; only a sample of the units (like counties or Enumerative 
Districts) would appear in any one periodic (e.g., monthly) sample, but the 
design would cover the whole population of such units (and perforce their 
composites) in some designed period (e.g., 60 months in 5 years) [Kish 19811. 

2. Averaging or aggregating over space and over other domains occurs in 
all samples, but it seems heuristic to recognize this explicitly. All national 
samples, for example, yield averages or aggregates over domains that may 
differ a great deal. In some countries (India, China, Yugoslavia, Brazil) 
national samples may be composites of separate state samples. Extreme 
examples consist of combining the national results of the World Fertility 
Surveys into continental and world estimates. Researchers may quarrel 
about the reasons and the methods for combining them and may argue for 
confining research to one or a few domains. This second purpose appears as 
the opposite of the first purpose, and this exemplifies the multipurpose nature 
of most samples. It appears also as the analog in another dimension for 
averaging over time. 

3. Averaging or aggregating over time is a familiar concept in some ways 
but novel in others. Aggregating over the hours of days and over days of a 
week appears in many studies. The reference periods of many surveys (and 
censuses) cumulate production and consumption behaviors over the preced- 
ing year. I4ultiround surveys have been used to aggregate monthly births 
over yearly spans. But in many other surveys there may be an arbitrarily fixed 
reference point or span of time, though the collection time has to be more 
broadly spread. Most important, however, we shall argue for deliberate 
averaging over a longer span of time, e.g., over a year or even over several 
years (Section 6.1). These arguments for smoothing over seasonal and other 
temporal fluctuations are in addition to the need for cumulating over time in 
order to produce increased sample sizes and precisions for domains. But the 
relation of the two kinds of details-over space and over time-can be 
interwoven in balanced designs (6.1). 

6.6C Strands of Change 

We attempt to sort out the many possible changes that may complicate 
methods needed for combinations. Repeated simple random selections (SRS) 
from the “same urn” would be an ideal model, but too far from usual 
realities, and cumulations may be subject to important changes both in the 
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population and i n  the sample. (Icor another perspective see 6.3 on sources of 
change.) 

I .  Population changes may be considerable, and these depend not only on 
the length of the period, but also greatly on the nature of the variables: 
economic variables and infectious diseases fluctuate much more rapidly than 
demographic variables. The composition and the size of the population will 
vary due to births and deaths, migration and other forms of mobility, net 
growth or attrition. Migration may be small across some national boun- 
daries, but internal migration across internal boundaries can have much 
greater effect on regional and local statistics. Changes in internal boundaries 
can also occur more frequently and can complicate cumulations of data for 
cities and metropolitan areas, for example, and even more for organizations. 

2. Sample differences must be distinguished from changes in the popu- 
lation itself. Differences between samples involve not only their relative 
sizes, but also the designs of the samples. In the case of similar designs for 
several samples, the relative precisions depend mostly on the sizes of the 
samples. But similar and size need proper technical definitions; for complex 
samples design effects and effective sizes need to be considered also (7.1). 
Biases due to nonresponses may be better considered under changes either 
in the populations or in the measurements. 

3. Changes in measurement may be either planned or unplanned (6.3). 
They are especially troublesome for different sources of data; they are called 
“laboratory effects” in biological and chemical literature and are discussed at 
length in meta-analysis (6.6A4). In different situations or times even the same 
questions and methods may elicit different answers because of differences 
or shifts in meanings of words, concepts, responses, and even the kinds of 
nonresponses. 

6.6D Types of Cumulations and Combinations 

The following outline tries to list the distinct situations that seem most 
common or feasible, each with an example or two. 

1. Same population, same time, same methods. Interpenetrating (repli- 
cated) samples are examples: A large sample is divided into k replications, 
each of which covers the entire population [Kish 1965, 4.41. The method 
proposes to measure all variable (nonsystematic) errors with the variance 
between the k replications. The replications represent selections from the 
same population, distinguished only by sampling variation. 

2. Same population, same time, diferent methods. One example can be a 
large survey sample divided between two (or more) organizations for field 
work. The results of the distinct surveys may be cumulated as sample cases, 
or the separately computed statistics can be combined later. Another 
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example would be combining data from the election polls conducted by 
several organizations about voting in the same election. The combined data 
would have details about domains (age, sex, occupation as well as geographic 
details), for which the sizes of the separate polls are inadequate. The separate 
surveys and polls should be examined for differences, but all those not 
obviously deficient can be combined when none are clearly superior (6.6B). 

3. Same population, diflerent collection time. The yearly cumulations of 
weekly samples of 1000 households of the National Health Survey [NCHS 
19581 serve again as a simple example. Even here the stabilities of the 
population and of methods can be questioned; but those questions become 
more critical with greater differences in methods and with greater gaps in 
time. With different collection times we must distinguish two types of 
reference periods: the same absolute time of reference and the same relative 
time of references. The “number of children born last calendar year” (e.g., in 
1985) would exemplify the same absolute time and could be cumulated 
weekly (e.g., over 1986). The “number of children born last month” collected 
each month exemplifies the same relative time; it is cumulated from 
“multiround” surveys in demographic surveys in some developing countries 
to reduce memory biases in reporting births. This involves aggregating and 
averaging over the time dimension. 

This brings to mind the “age-period-cohort’’ connection that may also 
be illustrated with cumulation of births to mothers. A cross-section sample 
can obtain births during the past year from mothers of all ages. Yearly 
surveys can obtain past year’s data for each age of mother, so that for each 
age of mother the cumulated data would come from different survey years. 
Instead, however, the cumulation can be by cohorts of mothers, so that a 
survey from year x(x = 0, I ,  2, . . . ,) supplies data for that year x for age 
a + x. One year’s survey can also supply data for several periods if memory 
can be trusted for retrospective data and if mortality is not a great problem. 

4. Dzferent populations. Here all the strands of change (6.3A, 6.6C) may 
operate. The types of cumulations noted earlier may be viewed as simpler 
situations, where the populations for the combinations could be considered 
as the same, similar, or stable. On the contrary, for combining samples 
from different populations, the differences between periods and/or between 
methods must also be considered. Among many possibilities we distinguish 
combinations over space and over time (6.6B). Most problems have been 
touched on elsewhere, but we merely add briefly combinations from 
multiframe coverage of the same population [Cochran 1964; Kish 1965a, 
1 1.2D; Hartley 19741. An example of dual frame coverage of households in 
the United States would be an area sample ( A )  plus a telephone listing ( B ) .  
The entire sample covers A B  + A B  + BA households but not the AB 
households, which are missed by both the household and telephone frames. 
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6.6E Weights for Cumulating and Combining 

This subsection differs from others, all of which are devoted to basic, often 
found problems and methods. But selecting weights for cumulating arises 
only rarely and recently, and this technical topic may be skipped until needed. 
It belongs to this chapter and I cannot find other treatments, as evidenced by 
the lack of references. We shall note several alternative methods for 
weighting, and the choice among them should depend on several criteria: 

1. appropriate populations of inference; 
2. validity and bias reduction; 
3. simplicity and robustness; 
4. efficiency and precision, including “measurability,” that is, proper 

measures of sampling error (7.1 E). 

This would be my order of overall preference, but any of them could 
predominate in specific situations. As usual, there are no criteria for clear 
choice among criteria. Any situation would require examinations of the 
purposes for the pooling and of the likely strands of change and differences 
among samples (6.6C). 

The alternative methods for weighting can be applied to (1) combining 
means with relative sizesp, into y = X , p g y g  with C , p g  = 1 or to (2) cumu- 
lating individual cases with individual weights w, into 7 = C, w,y,/C, w,.  The 
sample means are j g  = C, wayjg/C, wRI, where (g = 1,2, . . . , G )  for samples 
and ( j  = 1, 2, . . ., n,) for individuals, and C,n, = n. Within 
self-weighting samples the weights are wg, = 1,  and C,w, = ng and 
y g  = X,ya/rg.  For cumulating individual weights w, = p g w H .  

The relative weights p g  are useful for combining summary statistics like 
means, rates, proportions, and totals. They also facilitate choices among 
alternative methods in light of the preceding criteria. However, for cumulat- 
ing individual cases into a cumulated sample of n = C ng cases the individual 
weights w ,  offer more flexibility, especially for multivariate analysis. For 
complex statistics the individual y ,  may represent vectors or functions of one 
or several variables, with moments such as xp, x;zf that need the weights 
w, [Kish 1965a, 2.8C; Kish and Frankel 19741. I doubt that “completely 
specified models” exist generally to eliminate the need for those weights (1.8). 

Now we look at alternative methods for combining and cumulating. The 
discussion is entirely user oriented, and theoretical development would be 
helpful. In some situations the choice between methods may not be clear, and 
then one may compute two or more alternatives, compare them, perhaps 
even average them. There are many possibilities, and that is another reason 
we must neglect here formulas for computing variances for the pooled 

- 
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samples. The effects of overlaps between samples on variances are noted in 
6.6F. 

1 .  Simple merging of cases, with w, = I for each case. Imagine several 
simple random samples nR selected from the same population list. The 
cumulated mean should be simply the mean over the cumulated cases, 

= C, C,y,,/C, ng = C, n , j g / n ,  and this makes pg = n,/n for relative 
weights to combine the sample means Jg. The cumulated mean can be 
regarded as selected with the combined fractionf = n / N  = C,f, = C n,/N.  
Here we assumed the samples were selected without replacement, hence 
without replications between the samples. If replications were allowed it may 
still be better to use this simple addition rather than to search and adjust for 
replications. 

Whereas the simplicity of srs selections is not usually attained, it may be 
approximated. Several equal probability selections of elements from the 
same population may also be combined with wi = 1 for each of the 
combined cases; for example, proportionate stratified element samples, even 
if the modes of stratification differ among the combined samples. However, if 
the samples have very different “design effects,” efficiency (fourth criterion) 
may be better served by introducing corresponding differences into the 
weights, as in the following alternative 3. 

Even for complex samples, if both the population and methods can be 
assumed to remain stable, simple cumulation may still seem reasonable. For 
k interpenetrating samples each selected with rates (probabilities)f/k, for the 
cumulated sample the cases can be assumed to be selected with rates kf/k. For 
combining 52 weekly samples selected with rates A the NCHS [I9581 can 
use simply 52f as the overall sampling rate, disregarding small changes in 
population size. Even differential probabilities within the surveys can be 
accommodated. 

When, however, the populations or methods differ drastically between 
samples, other methods are needed for combining or cumulating samples. 

2. Population weights can be assigned in accord with assumed population 
sizes pi  = N g / C  N g ,  instead of the sample sizes pg  = ng/C n, earlier (1). This 
approach may be justified when population differences seem more important 
than sampling precision (e.g., for large samples and censuses). Population 
size NR is only one measure of relative importance and other relative weights 
of importance may be considered instead. The accuracy or reliability of 
measurements may also be used as the basis for assigning relative weights to 
samples. 

The most obvious weights would be equal p g  = I/G for each of G 
samples, and weights proportional to population sizes ( p g  cc N,) seem 
to be only one reasonable departure. Another possible departure would 
assign a decay factor (T for each receding period, so that weights would be 
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proportional to 1, (1 - (r), ( I  - o)*, etc., as sample periods recede. Then 
(r = 0 represents equal weights 1/G; and (T = 1 represents giving full weight 
1 only to the latest and zero weight to all others (a common practice). If each 
extreme (p, = 1/G and pg = 1) may seem reasonable in different situations, 
a compromise with 0 < (r < 1 should be sometimes better than both. 

These considerations concern models for sources of variations over the 
span of the combinations. They concern the first two criteria-appropriate 
populations of inference and validity. On the contrary, the chief consider- 
ations for the following methods are efficiency and precision, along with 
simplicity and robustness. 

3 .  Efective sample sizes pg cc n; can yield greater precision than simply 
accepting pg a ng when there are considerable differences in the efficiencies 
per element between the separate samples ng (7.1). The effective sizes 
pp K n i  = n,/defti may be a first suggestion where the deft: (design effects) 
differ greatly because of great differences in clustering. However, this 
alternative fails the third criterion of simplicity and robustness because deft: 
differ greatly for diverse variables, for diverse statistics, and for diverse 
subclasses; i t  is not simple to assign separate weights wi for each case for each 
of these statistics, especially for multivariate statistics. Some compromise 
average value may give most of the gains, without attaining optimality. For 
multivariate and for subclass statistics the design effects tend to be reduced, 
hence also relative disparities between the deft;, hence also between optimal 
values for the ni.  We may be more willing to sacrifice optimal precision than 
validity. 

One source, not uncommon, of inefficiency comes from variations in 
weights of itk, among cases within the same sample nK. If these variations 
are haphazard (rather than optimal), they tend to increase variances in 
comparison with epsenz (equal probability) selection. Then we may use 
I?; = n,/[l + C V 2 ( ~ 2 K ) ]  = n K / [ C i ~ ’ ~ , / ( C i ~ ~ ~ R i ) 2 ]  as the “effective size,” where 
C V 2 ( w g )  denotes the squared coefficient of variation of element weights wgj 
within the sample nR. If the range of relative weights is less than 1:1.5, the 
adjustments are trivial (e.g., for nonresponses or poststratification). How- 
ever, disproportionate allocations for domains (regions, ethnic groups) or 
frame problems may cause greater ranges of variation. If differences between 
samples of CV2(w,)  are greater, then weights p g  a n i  may differ greatly 
from pg K ng and justify their use [Kish 1976; 1965a, 11.71. 

4. Weights Wiproportional to Wgj cc l/PR,, inversely proportional to the 
probabilities of section Pgj,  seem like the most “natural” method for 
cumulating elements j from samples g. But we face practical problems: We 
need to know and use the selection probabilities within each qf the G 
selections ,for each elenzent that uppeurs in the combined sanzple. 

Simple merging of unweighted cases amounts to assuming final case 
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weights of w = l i f  = I j C f ,  = l/C(l/w,), with uniform sampling rates 
f q  = I / N ~ ~  within samples, from the same “superpopulation.” These weights 
estimate population totals, and they estimate means when divided by N .  

The weights could also be extended to unequal probabilities 
it’, = I/P, = l/C,P,, = I/C(I/C, W,,), provided we could learn and use 
the probabilities PRI for each element i that appears in the combined sample 
within each of the selections g .  However, secure knowledge about the reasons 
for the unequal PgI is unlikely and can lead to (serious) biases. For the case gi 
from the gth sample how can one tell what weight it should have in the 
imaginary superpopulation? Knowing and using Pgl can be difficult in the 
general case, with changes in the population composition, in the sampling 
methods, or even in some measurements. For example, P,, = 0 is possible in 
some samples, either because of sampling rules of inclusion or because of 
population changes (births, deaths, migrations, boundaries). I f  the missing 
domain can be clearly distinguished, its weights can be based on other 
samples (8 ‘ )  only, W ,  = l/Cg fgfd. 

If selection ratesf, can be fixed for each sample together with adjustment 
factors Cgd for each domain d, then the weights wd = l/Cg cgdf, can be 
computed; the adjustment factors can be assigned for differential non- 
response, for poststratification, for oversampling domains, etc. However, 
reliance on stable knowledge of the factors Cgd could lead to biases, especially 
because of transfers into and out of domains (migration, mobility, birth, 
deaths, etc.). 

Without fairly secure knowledge about the P,,, it may be the better part of 
valor to yield some of the precision that this method could yield and rely 
instead on the more robust methods 2 or 3. 

6.6F Gains from Combining Overlapping Samples 

When combining samples that are independent, the precisions increase 
as variances decrease proportionately with the sizes of the samples in a 
straightforward manner. However, for overlapping samples the situation 
becomes more complicated and the gains from combinations tend to be less 
in proportion to correlations from the amount and the kind of overlaps 
(6.2B). The variance for the combined mean of two equal samples would 
be (S2 + S 2 ) / 4  = S 2 / 2  with nonoverlap; (Sz + S2 + 2 S 2 P R ) / 4  = 
(1 + P R ) S 2 / 2  with partial ( P )  overlap and (1 + R ) S 2 / 2  with complete 
overlap (P = 1). 

For means based on J overlapping samples the general expression would 
be 
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If we assume uniform S,? over all samples this becomes ( S / / J )  
1 + C P , x R , x / J  , and the last factor is a minimal 1 for P = 0 

nonoverlaps only. There are J(J - 1) terms in the covariances and the 
combined variance becomes (S’/J)[l + ( J  - 1)R*], where R* represents 
an average correlation term for the P,kR,k among all the J pairs. This would 
be a complex relationship where R,k probably fluctuates between periods but 
also decays over longer spans. Furthermore, for partial overlaps the Plk may 
also be large between neighboring spans but may tend to vanish for larger 
spans. Thus the covariances may be much more important for closer than for 
distant pairs of periods. However, in case of complete or large overlaps this 
term can be large for large values of R*.  Thus the mean of J samples may 
have variances anywhere from S,’/J for nonoverlaps or for R* = 0 to 
approaching merely S,? for complete overlaps and very high values of R*.  

i J + h  



CHAPTER 7 

Several Distinct Problems of 
Design 
I do not choose to speak more clearly than I think. Niels Bohr. 
You don’t need the masterpiece to get the idea. Pablo Picasso. Primitivism in 
Modern Art. 
The best is the enemy of the good, Voltaire. 
Anything worth doing is worth doing badly. Lord Chesterfield quoted by G K 
Chesterton. 

These six sections may best be viewed as appendixes to the main body of the 
book. Each section concerns a distinct topic with little connection between 
them. Rather they connect with various places in the six chapters, where 
references to these appended sections abound. These technical topics arise 
often and their treatments were postponed in order to prevent their 
interrupting the main flow of discourse. 

One common characteristic of all these six subjects is their special and 
technical nature. Because of this they do not receive adequate or any 
treatment in ordinary textbooks, and I cannot assume the readers of this 
book to be familiar with or even aware of them. 

Nevertheless, I judge them to be important problems of design, and that 
constitutes their second common characteristic. Leaving them out entirely 
would make the treatments and decisions of this book seem arbitrary, 
incomplete, curtailed. The choice of these topics may also seem arbitrary; 
others could be added, but I had to stop somewhere. 

A third characteristic of these six topics is that a nontechnical treatment 
of each seems both possible and useful. The discussion of each topic is 
necessarily incomplete, with references to more technical and complete 
treatments-where I could find them. However, some topics still await 
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adequate treatments. Yet none of these forms of incompleteness would 
justify my leaving the reader unaware of the existence of these important 
problems. 

7.1 ANALYTICAL STATISTICS FROM COMPLEX SAMPLES 

7.1.A Limits Around the Topic 

The title refers to a twofold complexity of statistical estimates and of 
selection methods; hence the topic could be potentially vast and vague. For a 
concise treatment we introduce several limitations. These can be amplified 
with references to other treatments for those problems that are excluded 
from here. This section continues the discussion of Chapter 2. 
1. Complex Analytical Statistics. Discussions in Chapter 2 on “Analytical 
Uses of Sample Surveys” concern estimates of means and of their com- 
parisons, or differences (v, - Jb) .  These cover most of the presentations of 
data in social research even today. Nevertheless we have seen a continuing 
expansion in social research of using more complex analytical statistics, 
which is greatly facilitated by the spread of electronic computing. That 
expansion easily outran the foundations in statistical distribution theory, 
especially those for complex analytical statistics. These refer here to statistics 
more complex than comparisons of means; regressions and multivariate 
analysis in general would be good examples. In terms described in 
Figure 2.2.1 they refer chiefly to column 3 of that Figure, but the discussions 
of Sections 2.6 and 7.1C can also enlighten our view and treatment of means 
and of their comparisons in columns 1 and 2. 

2. Cluster Sampling Versus Stratijied Element Sampling. Figure 2.2.1 also 
distinguishes the effects of stratified element sampling on row B from those 
of cluster sampling on row C. These two kinds of departures from indepen- 
dent (simple random) sampling usually have entirely different effects on the 
variances of statistics. Proportionate stratified selection of elements tends 
to reduce the variances of means, but only slightly. The design effect (deft) 
ratio is slightly less than 1 (2.5). Those reductions tend to disappear from 
comparisons of means and to assume that deft N 1 (negligible effects from 
proportionate stratification) for them is not misleading (cell B2). Similar 
conjectures of negligible effects for complex analytical statistics (cell B3) 
usually are also good approximations, and those conjectures have been 
supported both with theory and with empirical results. 

The effects are usually quite different for cluster sampling: Clustering 
tends to increase the variance; the increases can vary a great deal, and may 
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be large; and the increases persist (even if reduced) for subclasses and for 
comparisons, also for complex analytical statistics (cells C2 and C3 in 
Figure 2.2.1). With deft2 denoting the ratios over simple random variances, 
we say that deft2 is greater than 1, sometimes only slightly but often 
considerably, and higher for means than for their comparisons or for 
analytical statistics. Those increases and conjectures have been justified both 
theoretically and empirically (2.6,  7.2B.9). 

3. Unequal Weights Versus Lack of Independence. The effects of complex 
selection methods (clustering and stratification) that serve as controls 
(restrictions) on the independence of sampling probabilities have been dealt 
with often in sampling literature (also in Chapter 2). The effects of weights 
introduced to compensate for unequal selection probabilities have been 
mostly neglected and are quite different from those due to stratification and 
to clustering. 

One reason for that neglect is due to the prevalence in research of self- 
weighting samples, when the elements are selected with equal probabilities; 
and there is much to recommend them [Kish 19771. There may be slight 
departures from equal probabilities due to (1) adjustments for nonresponse 
and noncoverage; or (2) other statistical adjustments for sampling variation; 
or (3) small inequalities in selection frames and procedures [Kish 1965a, 2.7, 
11.7; Verma et al. 19801. Examples of (3) are weighting for numbers of adults 
in households when either addresses or telephones are selected with equal 
probabilities [Kish 1965a, 11.3; Groves and Kahn 19791. Such departures 
generally have, or should have, mild ratios to unity and consequently only 
mild effects on the variances. However, these “mild” effects are not entirely 
negligible, perhaps amounting to 5 to 30 percent increases in the variances. 
Furthermore, these variance increases tend to be “inherited” in the sub- 
classes, in comparisons and in analytical statistics: They do not decrease 

Quite different from those “mild” departures are drastic and deliberate 
departures from equal probabilities for disproportionate or “optimal” 
allocation of sample cases. Three distinct examples will help to illustrate 
these: ( I )  deliberate oversampling of a minority subclass to achieve equal 
sample sizes (e.g., oversampling by the factor 10 to achieve “equal” samples 
for 10 percent of blacks in the United States); (2) “optimal” allocation for 
rare but important elements (e.g., large stores or institutions) [Kish 1965a, 
3.51; (3) selection with PPS (probability proportional to size) for “units of 
variable sizes’’ (7.5). Departures in all these cases can and should be large, 
and the necessary weighting procedures should be deliberate and specific to 
the situation (7.4). 

Faced with the possible increases in variances due to weighting of sample 

(7.4). 
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cases, would it be better to forego the increases in both variances and in 
complexity of analyses and to compute unweighted estimates? We need not 
repeat here the reasons for weighting up to population values, presented 
elsewhere (2.1, 2.7, 7.4). 

4. Descriptive (Point) Estimates Versus Znferential Statements. This sec- 
tion focuses on the effects induced by lack of independence on inferential 
(probability) statements, especially on the increases due to clustering in the 
sampling errors of analytical statistics. Thus we follow the topics discussed in 
Section 2.2, that descriptive statistics, “point estimates,” or “jirst-order” 
estimates are not afected, or only slightly afected by the lack of independence 
in the selection (by differences in joint probabilities) between population 
elements. This signifies that for samples of moderate or large sizes the 
descriptive statistics (properly weighted, if necessary) are “good” and 
“consistent” estimates of corresponding population values. This statement 
holds for simple sample statistics like the mean 7 and the element variance sz; 
it holds also for complex analytical descriptive statistics, such as regression 
coefficients. 

7.IB Alternatives for Sampling Errors of Complex Samples 

The following distinct alternatives for computing sampling errors are not 
equally appropriate to all specific situations. However, two or three of them 
may all seem reasonable in any situation, and a clear choice between them 
may not be obvious. One of them should not be accepted lightly as the 
obvious choice, without considering other alternatives. Sometimes, alas, a 
better choice emerges only with hindsight, after the results are in. None of 
these alternatives should be dismissed out of hand, because they all have had 
their uses. But frankly, my chief interest lies in the last alternative, where 
proper computations are combined with approximations to obtain reason- 
able sampling errors for analytical statistics from clustered samples (7. IC). 

1. Omit Computing and Presenting Sampling Errors. This practice, 
although in decline, is common even today. It is seldom defended theoreti- 
cally, but sometimes along the lines I tried to present in 1.8.3. But for 
statistics based on censuses and on large samples connected with censuses 
(5.3), sampling errors may be less important than other kinds of errors and 
biases. 

2. Use SRS Estimates for Sampling Errors, Disregarding the Complexity of 
Actual Selection Methods. These practices may well have increased with the 
availability of “canned” programs for analytical statistics, composed without 
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advice from sampling specialists. In most programs the standard errors and 
tests of significance for those programs are computed with assumptions of 
independent selections, disregarding design effects. They may be good 
approximations for proportionate stratified element selections, but they can 
be gross underestimates for cluster sampling [7. lC]. 

3. Judgemental Inference to Population; Model Dependence. These may be 
based on naive disregard of design effects or on mathemically sophisticated 
attempts to hurdle obstacles. They may be represented by posing “internal 
validity” against “external validity” (3.5) and by approaches discussed in 2.1, 
2.7, and 1.8. 

4. Restrain Analysis; Wait for Distribution Theory. For means, subclass 
means, and their comparisons, stat istical sampling theory provides adequate 
formulas for variances from complex samples; and a great deal of research is 
being and can be presented with ingenious multivariate utilization of those 
simple statistics. However, more complex analyses (regressions, log linear 
models, etc.) can have great analytical advantages; and to refrain from using 
them on complex samples (because these lack proper sampling errors) seems 
too great a sacrifice of knowledge contained in data. On the other hand, it 
would be futile to wait for an early development of statistical distribution 
formulas of errors for all those complex analytical statistics [Kish 19841. 

5.  Select a Simple Random Sample or a Reasonable Approximation. An srs 
may seem feasible when a good list of ‘‘all’’ population elements is available 
or feasible and location costs are not forbidding [Kish 1965a, 5.11. For 
example, telephone surveys are frequently selected with telephone sampling, 
using “random digit dialing” in some countries [Groves and Kahn 19791; 
these need some skill, care, and probably some toleration of imperfections, 
such as noncoverage, blanks, and unequal numbers of elements identified 
with the telephones. Also mail interviews from some literate and cooperative 
populations with good lists of adresses, such as the population registers in 
northern Europe, may be fairly successful. But even in these situations some 
of us would prefer to select an approximation to srs (such as a systematic or 
proportionate stratified selection), because it is easier as well as less variable; 
but these reductions of variances will probably be negligible for analytical 
statistics. 

6.  Select Simple Replicated (Interpenetrating) Samples. These methods 
would circumvent the obstacles raised by complex analytical statistics by 
returning to the basic statistical concept of simple, independent replications. 
That basic concept calls for k independent selections, but each selection 
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can be as complex as required by the situation. Then the variance of any sta- 
tistics b = X b j / k ,  averaged over the k samples, may be computed as 
var(6) = X(h, - h)*/k(k - 1). These variances may also be computed as 
“jackknife” estimates. 

The number of independent “interpenetrating” samples of k = 4 was 
advocated by Mahalanobis in 1948 and Lahiri. Clear description of the 
method for k = 10 replicates is given by Deming [1960, chs. 6--101, and 
Jones, in 1956, presented reasons and rules for 25 to 50 replicates. But in 
practice it is unsatisfactory for numerical reasons: if k is small (4) the 
computed variance lacks adequate precision; but large k (50) sacrifices too 
much of the control desired for good design (7.1E) [Kish 1965a, 4.4, with 
further references]. 

These obstacles seem even greater for designs of comparisons, concerned 
with “internal replications” of pairs of sites (3.1B, 3.1D). Lack of controls 
imposed by independent selections conflicts with the needs of controlled 
designs for “falsifiability” (7 .6) .  

7. Use Repeated Replications, Jackknife, Bootstrap, or Resampling Methods. 
These names refer to a family of related methods for computing sampling 
errors when the number of independent replications is too small for useful 
estimates. Each method repeats the use of  individual replications, thus 
resumpling from the same selected units. Suppose we have only two selections 
from each of H strata, and such paired selections are common: They allow 
for valid estimates of variances with the minimal replication of 2 within each 
of the H strata. Thus 2 H  units are controlled by H strata, and H is often 
large. 

For a simple example, however, we use only H = 3 and denote the three 
pairs of independent selections as I Aal BblCcl. Then the two independent 
halves A B C  and abc would yield a simple replicated estimate of the variance 
of a statistic 6 = C hi/6 that is based on both halves, hence on the entire 
sample of six units. But two replications would yield a uselessly imprecise 
estimate of the variance, with only one “degree of freedom.” 

But with repeated rrplicutions we may use A B C ,  aBC, AhC,  and ABc to 
compare with the overall mean (also ahc, Abc, aBc, and abC,  but these 
are mostly redundant). For two selections per stratum there are 2H-’such 
repeated replications; for H = 3 there are 4, but for large H they would be 
too many. We may sample from that large number 2”-‘,  and hahnced 
r.cycritrtl rc~pliccr~ions (BRR) permits this to be done efficiently. 

For ,jcickknife reppcuted rcJp1icution.s (JRR) from the same three pairs one 
may use the h, statistics based on the three combinations AABhCc, AuBBCc, 
and AuBIKC and compare them with the overall statistics b .  From H pairs 
there would be H combinations with JRK. 
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Details, justifications, and comparisons are available for BRR, JRR, and 
linearization (Taylor, delta) methods [Kish and Frankel 19741. All three 
methods can be used to compute roughly similar estimates of sampling 
errors, and none are clearly superior. More recently, “bootstrap” methods of 
resampling have been added [Efron 19821, but not yet developed for complex 
selection methods. For recent expositions see Rust [1984, 19861 and Rao 
[1986]. 

7.IC Approximations, Conjectures, and Analogies 

Differentiate again the distinct problems B3 and C3 of Figure 2.2.1 : These 
two differ greatly, hence class B3 for stratified element sampling is marked 
“conjectured,” whereas C3 for clustered samples is “difficult.” Let us discuss 
briefly the easier “conjectures” for proportionate stratified element sampling 
(pres). The conjectures stand on both theoretical and empirical legs and 
involve four steps. First, ample empirical data exist showing that only 
modest reductions of the variances can be obtained from pres, because most 
of the variance remains within strata even after stratifying the elements; 
hence S z / S 2  = deft2 < I ,  but only by small percentages. Second, for 
crossclasses even those small gains are reduced in proportion to the relative 
sizes M, < 1 of crossclasses, and thus values of deft: tend toward I .  Third, 
for differences of crossclasses, the gains (reductions) in the variances tend 
to vanish altogether and deft2(j7, - Y h )  approaches 1: The variance of 
( J ,  - j h )  approaches that for pairs of srs samples. These three steps 
(repeated from 2.5) combine theoretical with empirical results and lead to 
the fourth conjecture. 

Fourth, it seems reasonable to conjecture that for complex analytical 
statistics the effects of proportionate element stratification will be negligible 
and that probability statements will be close to classical srs limits. The 
clearest (but not the only) evidence for these conjectures comes from eight 
diverse surveys in Israel on savings, attitudes, hospitalization, perception: the 
(iterated) ratios of pres/srs values of chi squares came to 1.0 or 1.00 in all 
eight surveys [Kish and Frankel 1974; Nathan 1972, 19731. Differences 
between means measure relationships, and their variances approach srs. It is 
reasonable to conjecture that srs approximations will hold for other 
analytical statistics. It is a useful conjecture because appropriate compu- 
tations of sampling errors for analytical statistics will be difficult for the 
foreseeable future. A cautious statistician faced with a large and important 
set of data could compute values of deft2 for means of the sample and of 
crossclasses. If these show large departures from srs, then he may want to try 
some adaptation of the computing methods of repeated replications. 
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Effects of clustering on sampling errors of complex analytical statistics (C3 
in Figure 2.2.1) pose problems that are more difficult, and more important, 
for several reasons. First, clustered and multistage samples are now common 
sources for complex statistical analyses. Second, the complexities of both the 
analyses and of the designs have many aspects, too many and too complex 
for mathematicians to develop distinct and useful distribution theories. 
Third, the design effects due to clustering are often both considerable and 
persistent, and ignoring them leads to serious overconfidence in sample 
results. Fourth, considerable design effects have been and are now reported 
widely for sampling errors of diverse analytical statistics. 

Table 7.1.1 presents examples from three different sets of calculations, and 
we may note briefly several aspects, also noted elsewhere. First, design effects 
are considerably greater than 1, the srs value. Values of deft = 1.4 for 
standard errors (or deff = 2 for variances), for example, if ignored, would 
lead to gross underestimates of the real probabilities of erroneous inferences, 
because these are increased from P = .05 to about .I5 and from P = .01 to 
about .07. Second, deft values within data sets are related and deft for 
complex coefficients seem to be always less than deft values for means: These 
latter can be computed to serve as reasonably conjectured upper limits. 
Third, the relations among the diverse coefficients (and other statistics) are 
not easily conjectured or predictable. For example, we wrongly guessed that 
partial correlation coefficients (because they are more complex, interactive) 
would have lower defts than simple correlation or regression coefficients; but 
they have not in Table 7.1.1. Results like these have been made possible by 
the emergence since about 1970 of repeated replications. They are being 
reinforced with similar results [Landis et al. 19823. 

In many actual situations computing sampling errors for all (or even 
most) of the statistics presented just does not seem practical. Moreover, 
alternatives 5 or 6 above, selecting either an srs or a simple replication, are 
impractical. Ignoring or avoiding the problem with one of alternatives 1-4 is 
often practiced, but I cannot recommend any of them. Alternative 7 with 
methods of repeated replication or linearization is available for most 
situations but may be too difficult or expensive for some studies. In other 
studies sampling errors may be computed for some, but not for all the myriad 
statistics presented in their reports. 

Thus approximations with conjectures seem inescapable; indeed they are 
widely practiced in connection with empirical results. They also appear in 
methodological investigations of the effects of complex selections. Alas, 
explicit general expositions and theoretical justifications are still needed. 
However, I shall describe some methods used for approximations, after a 
brief catalogue of the sources for analogies. We begin with relatively simple 
and safe conjectures and proceed to complex and bold methods as needed. 

1. Simple situations of small andrare clustering may permit assumption of 
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TABLE 7.1.1. Deft = JDeff for Standard Errors of Five Types of Statistics from 
Three Complex Samples“ 

Sample Set A B C 

Means 1.11 1.80 1.44 
Simple correlation coefficients 1.10 1.26 1.36 
Regression coefficients 1.02 1.30 1.11  
Partial correlation coefficients 1.04 1.40 1.36 
Multiple correlation coefficients NA 1.46 1.89 

“‘From Kish and Frankel 1974. 

only negligible increase of deft over the srs value of 1. For example, suppose 
that dwellings are selected individually and with epsem; then for fertility 
surveys of mothers, the number of potential mothers in dwellings is seldom 
more than one, almost never more than two. This is only a little less true for 
surveys of adults of either one sex in developed countries with small nuclear 
families. Even in samples of small area segments, the members of a widely 
distributed and rare crossclass may appear mostly as individuals. 

2. Relatively safe conjectures may be made from the same statistics from 
repeated studies with similar sample sizes, designs, and variables. Constancy 
for relations like homogeneity provides a reasonable basis for conjecture for 
the same statistics over the series of similar repeated studies. 

3. However, the analogies become weaker, hence models must be 
stronger, when we must make conjectures not from the same statistics but 
from “sinzilar” statistics from the same survey. Finding and defining “similar” 
statistics may seem difficult, but not entirely impossible [Verma et al. 1980, 
Kish et al. 19761. For example, it may seem reasonable to impute values of 
deft for standard errors of regression coefficients from other similar re- 
gressions from the same study. These other regressions may be chosen to be 
shorter and simpler to compute, in order to save effort on the larger ones. 

4. We proceed to bolder analogies if we must. Values of deft(7) for 
means, which are most easily computed, may be used as upper bounds for 
more complex statistics from the same studies, as discussed later in more 
detail. 

5. Borrowing sampling errors fiom “similar” studies is fraught with risks 
and needs the attention of good statisticians to judge what is “similar” and to 
advise on methods for translation from the source of computations to the 
destination of needed sampling errors. Nevertheless this is common practice 
and probably better than simply assuming srs, when alternatives 2, 3, and 4 
are not available. Other studies and methodological investigations are the 
sources for models and relationships for the needed conjectures. 
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7.1D 

Computations of sampling errors for surveys are generally multipurpose in 
two ways: First, they concern many statistics for many variables; second, 
they can serve several different needs. Computing sampling errors involves 
more than variances and standard errors. Design effects (deft2), ratios of 
homogeneity (roh) and coefficients of variation (especially cv(x) in 7.1 E) are 
useful and used; from these, averages and other functions can be computed 
also, and they often are. 

Design effects, the ratios deft2 = actual var/srs var, have several impor- 
tant uses. ( I )  They may be averaged for greater stability, when the computed 
variances are subject to great variation, because they are based on few 
primary units, or “degrees of freedom” (7.1E). (2) They can and should be 
used to check for gross errors in variance computations. Gross errors are the 
most common and easiest to spot for deviations from the base of 1. (3) Their 
main purpose is in models and conjectures for other statistics from the same 
survey. But for this purpose the function-roh = deft2/(6 - 1) is preferable, 
especially for crossclasses. (4) They may be “borrowed” to serve in con- 
jectures about sampling errors for other surveys. (5) They may be used 
for designing other surveys. 

Some simple rules (a-f), relationships, and models follow for computing 
sampling error functions and for their broad, multipurpose uses. 

a. Compute s te(y)  and deft(?) for many means. Variances for means (and 
proportions) are relatively easy to compute, and with today’s programs they 
can be readily computed simultaneously for many variables for the overall 
means ( j ) .  At the same time srs variances can be computed, and from the 
ratio deft2 = actual variance/srs variance, values of deft should be obtained 
for the full diversity of variables covered by the study. Although they will 
exhibit a much smaller range than standard errors, the deft values often still 
differ a great deal for different variables. Three kinds of situations may ensue 
in cluster sampling: (1) All the deft may be near and mostly higher than 1 .OO, 
pointing to low, perhaps negligible, design effects; (2) a great deal of 
variation may exist both above and below 1.00, pointing to too much 
variation for the estimates of the variances due to too few replicates, “degrees 
of freedom” (see item f); (3) a fair amount of variation may be found for deft 
values above 1.00, perhaps up to 2, 5, or even beyond, and this is the 
situation that most needs to be treated. 

These values of deft(J) for means of different variables from the entire 
sample can each be rich sources of conjecture for other statistics. The 
following procedure depends on models of relations between diverse sta- 
tistics for the same variable. However, there often are great differences 
between variables, and it is difficult to model good conjectures between 
variables. 

Methods and Models for Sampling Errors 
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b. Deft. For measures of sampling errors, researchers most often want 
to use something like standard errors. These are known best in the forms 
ste, ( j )  = s i b ,  or steo(p) = ,/&$ for srs. These and similar standard 
errors steo(g) are also available these days as standard outputs of computing 
programs for many complex statistics (8). For example, the outputs for 
multivariate linear regressions yield not only the regression coefficients gk but 
also standard error ste,(gk) for those coefficients. However, these are all srs 
estimates that m3y seriously underestimate the actual errors of those g k  

statistics. We need the factors deft(g) > 1 that will bring the standard errors 
closer to their proper value: ste(gk) = deft(g) x steo(gk). The utility of deft 
for conjectures and analogies is due to its relative stability by removing three 
sources of confusion (“nuisance parameters”): units of measurement, the 
spread of the frequency distribution (02), and the overall sample size (n).  
Thus the defts are more “portable” than standard errors for comparisons 
over statistics and across studies. 

The best source for “borrowing” such deft(g) values would be “similar” 
statistics for similar variables. But if these are not available we may also 
make use of deft(7) values for means, with this relationship: 

1 < deft(g) < deft(j) (7.1.1) 

There is a fair amount of empirical evidence and methodological justifi- 
cation for this statement: The variance of analytical statistics (e.g. regression 
coefficients) in cluster samples, though greater than 1, tends to be less than 
the deft(7) for means from the same database. These relations yield 
sufficiently narrow limits when the values of var(J) are not far from 1 .OO and 
not too diverse. 

c. Deftz and roh. For means of crossclasses the effects of clustering should 
decrease as the size of crossclasses becomes small, and deft2 should approach 
1 .O as the average cluster sizes approach 1. If the value of deft2(y) for the 
entire mean is already close to 1, there is little room or need for conjectures. 
However, if deft2(J) is substantially above 1, it is comforting to know that a 
wealth of evidence bears out the simple conjecture of almost linear decreases 
of deft2(Fc) for crossclass means (7,). This follows from deft2 = 
[ I  + roh(6 - l)] and from the conjecture that roh remains relatively 
constant from roh, for the total sample to roh, for the crossclass (2.6). Then 
deft(7,) = [ I  + roh,(b, - I)] ,  and deft(7,) = [ I  + roh,(b, - I)] = 
[l + roh,(b, - I)]. The last step assumes roh, = roh,; but actually roh, 
tends to be slightly higher than roh, even more than slightly for subclasses 
that tend to be clustered and segregated, such as socioeconomic subclasses 
[Kish, Groves, and Krotki 1976; Verma et al. 19801. Hence these approxima- 
tions must be used with some caution, and only when the cluster sizes are 
fairly even (Figure 7.1.la). 
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den 

- 
- n,= a nc n, = b,a 
b , =  1 

Figure 7.1.la. Roh values are more “portable” from one crossclass to another than deftz 
values, which are functions of the size 6, of the crossclasses in the clusters, since 
deft: = [ I  + roh,.(b - I)]. But the values of roh,. seem to remain almost constant from roh, on 
down to small crossclasses. Therefore deft: for crossclasses declines almost to 1.0 as the 
crossclass sizes decrease from the total n, = an, to n, = a, that is, the cluster sizes decline from 
6, = n,/a to 6 = 1. But between variables the values of roh can vary a great deal, and variations 
from 0.001 to 0.200 are common. 

Nevertheless, for inference to crossclasses these approximations are much 
better, when deft is not negligible, than assuming either than deft is constant 
at deft = 1 (as in srs) or that deft(Jc) = deft(j,). 

Thus for our approximations for crossclass means we may use two 
stages of conjecture: first ste to deft, then deft2 to roh, then back in two 
stages of roh to deft2 and deft to ste. (See Figure 7. I .  1 b.) 

Roh values have greater relative ranges of variation than deft 
values: even a roh = .001 may be nonnegligible with 6 = 300 
(since I + .001[300 - I ]  = 1.3), but values as high as roh = .200 
are not uncommon. But roh values are much more “portable” to 
crossclasses than deft values. They are also more “portable” across studies 
with different designs and even across populations for the same variables; 
and for “similar” variables with more caution. 

Design effects for differences between crossclasses may decrease toward 
1 .OO due to covariances within sampling units, but in a manner too complex 
to discuss here (2.6). 

d. Efleeclive n. In the variance of the mean from a complex sample 
var(j)  = deft2(s2/n), we viewed deft2 as acting on the variance of the mean 
sz/n.  We also could regard deft as acting on the element standard deviation s 
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ste + var -____t___. var j ste 

1 1  1 ’ 1 ’  
deft- d e f t 2 b d e f t 2 j  deft 

Figure 7.1.lb. Cluster sizes vary greatly both between samples and between crossclasses used in 
analyses of the samples. For the reasons in 7. I .  la, it is more reasonable to use the three-level 
inference from variances to deft2 to roh and back again than a two-level inference through the 
deft’. Variances and standard errors are even less portable, because they depend also on units of 
measurement. This justifies the need for seven steps from standard errors to standard errors 
through the rohs. 

For differences (,?< - F*) of two crossclasses, the declines of deft* toward I .O are further 
accentuated by subtractions of usually positive covariances. 

and var(y) = (deft s )2 /n .  But this approach becomes involved for complex 
analytical statistics. However, it may be more helpful to regard deft2 as 
acting on the size of the sample n. Thus n(effective) = n/deftz; that is 
deft2 > 1 reduces the effective sample size proportionately. This has been 
used conveniently for tests of significance [Rao 19861. 

e. Efecrs of’ haphazard weights. The effects of haphazard weights on the 
variances tend to remain undiminished in crossclasses, comparisons, and 
in analytical statistics. This differs from the design effects deft2 < I for 
proportionate stratified element sampling which tend toward 1 from below, 
and the deft’ > 1 for cluster sampling which tend toward 1 from above 
(Figure 7.1.2). 

f. Components o j the  variance. Conjectures and approximations based on 
values of deft and roh “yield rough-and-ready,” “quick-and-dirty’’ methods 
for dealing simultaneously with several complexities of survey samples. They 
permit computing for and handling of many variables and many statistics, 
and those are our foremost tasks. 

However, this overall method hides the full complexities of multistage 
samples. For example, a three-stage sample with stratification at each stage 
may have six or more components. But all those components are seldom 
computed, especially for the many variables that most surveys need, and for 
several reasons. First, the work would be complex and consuming. But 
second and more important, subtracting several components yields values 
that are highly, even uselessly, variable. Third, it would be too difficult to 
present and to interpret many components for many variables. 
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Deft 
A 

Deft> 1, clusters 

Deft > 1, clusters 

Deft = k > 1, weights 

n,= a <  nc nf 

Figure 7.1.2. Convergences of deft to 1 for decreasing crossclass sizes. 
When the crossclass size decreases from the total sample size n, toward n, = a (the number 

of clusters). the average cluster size decreases from gl = n,/a toward I .  The simple random 
standard error a/,% increases by the factor & where 6, = n,/o. But the design effect 
deft > I ,  due to clustering, decreases toward I ,  at the same time (Figure 7.l . lb),  hence the 
complex error deft ~ / \ h  increases by less than A. For direrences of crossclass means, the 
effects tend to be further reduced toward I .  

We note three other possible eITects for decreasing crossclasses. The deft < I for proportion- 
ate stratified element samples (pres) generally increase toward I ,  The effects due to “random” 
weighting, small, i f  any, tend to remain constant ( k ) .  The effects on design subclasses tend to 
remain constant, on the same level as for n, on the average, but they may be different and difficult 
to generalize. 

g. Models. A great variety of models, other than defts and rohs, may 
become available eventually. Now, however, we can point only to the use of 
the coeficients of variation, c v ( j )  = ste(y)/v. With the conjecture of 
constant values of cv, we can use ste(jd) = jd[ste(J, /v,] to conjecture from 
the computed values for ste($,) to the dcqired ste(yd). This model removes 
the units of measurement and depends on the means and standard errors 
(ultimately the standard deviations) being proportional between variables. 11 
has been used with success for positive variables skewed toward higher 
values, but i t  may perform poorly for others [Hansen et al. 1953, See. BlS].  
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Models are also needed for averaging and generalizing of sampling errors 
(standard errors, defts, rohs) computed with few replications (degrees of 
freedom) and hence subject to excessive variability. Expositions and descrip- 
tions are sparse, but some examples may help [USCB 1978; Gonzalez et al. 
1975; Verma et al. 19801. 

7.1E Measurability of Sampling Errors 

“Measurability denotes designs which allow the computation from the 
sample itself, of valid estimates or approximations of its sampling varia- 
bility” [Kish 1965, I .6]. This basic idea permeates survey sampling and lies in 
the foundation of experimental design. R A Fisher wrote [1935], under 
“26. Validity of the Estimation of Error,” about replication: “its main 
purpose, which there is no alternative method of achieving, is to supply an 
estimate of error by which the significance of these comparisons is to be 
judged. . . . The purpose of randomization is to guarantee the validity of the 
test of significance, this test being based on .an estimate of error made 
possible by replication.” He also wrote, under “20. Validity and Randomi- 
zation,” that “our estimate of the error of the average difference must be 
based upon the discrepancies between the differences actually observed . . . 
to guarantee that such an estimate be a valid one. .  . .” Similar concepts 
underlie designs of samples and of experiments with four basic aspects. 

1. The computation of error estimates must be based on variations found 
in the sample data themselves. Survey samplers do not assume srs 
selection for clustered samples, and deftZ measures the discrepancy. 
Those who would deny this strong connection are heavily “model 
dependent” (1.8). 

2.  Randomized replicates are the bases for valid error estimates, and the 
computations of errors must reflect the units randomized in the design. 
The error estimates must reflect the clustering and stratification 
(blocking) used in the design. The “first-order’’ statistics can be 
computed from knowledge of the probabilities p, of selection of each 
sample element. However, computations of the “second-order’’ mea- 
sures of sampling variability are affected by the pairwise joint proba- 
bilities p, ,  of the elements, and these depend on the complexities of 
design. 

3 .  When valid estimates are difficult in practice, “good” approximations 
may be substituted, and to that extent the computations become 
“model dependent,” as examples below show. 

4. We discuss sampling variability and sampling errors, not only sampling 
variance, in order to include standard errors and mean square errors; 
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other aspects of sampling errors, such as design effects and coefficients 
of variation; confidence intervals and other probability intervals of 
uncertainty and tests of uncertainty; and variable, measurable errors of 
observation. 

The practical requirements for a measurable design in survey sampling are 
not many. 

1. The design must have two or more randomized replicates selected from 
each stratum in order to permit computation of variances from each 
stratum. 

2. To have useful precision for sampling errors it is best to have about 
30 or more “degrees of freedom.” For example, for a design of two 
counties (areas) from each stratum in the primary selection stage, one 
would need 30 x 2 = 60 counties (areas) in the whole sample; each 
stratum yields one degree of freedom. 

3 .  Identifying numbers of the strata and primary selection units must be 
available for all sample cases on the tape (or disc, deck, list). This 
obvious need has been usuully neglected in practice, thus making it 
impossible to compute valid sampling errors. 

4. The preceding identification (3) is sufficient for computing overall 
sampling variability from primary selections, often called “ultimate 
clusters” [Kalton 1979; Kish 1965a, 6.5; Hansen, Hurwitz, Madow 
1953, 6.71. This has great practical advantages in multistage sampling: 
For the stages after the primary stage the identifying numbers of strata 
and of sampling units may be ignored. 

5. Those numbers for later stages would be necessary only for computing 
components of variances for later stages. But those components are 
seldom computed, both because they would be complicated and 
because they would be unstable. It would begin with an unstable 
overall variance from the first stage (because this is typically based on 
small number of primary selections), and it would become progres- 
sively less stable as variable components have to be subtracted for 
successive stages of selection. Estimates of the components would be 
useful for designing future samples, but not necessary for inferences for 
the sample results. 

6. We had to abandon strict rules in order to have practical guides to 
measurable samples. First, we could not insist on unbiased estimates of 
the variance, but were satisfied to accept mean squared errors with 
tolerably small biases (7.2F). Second, our measurable designs will not 
satisfy all estimators, because for some estimators no design may yield 
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reasonable error estimates. We need a practical definition for designs 
that will yield measurability for most common estimates, especially 
linear estimators like means. 

Some diverse examples should help clarify concepts and problems, 
perhaps with the help of a few definitions that follow immediately below. 

1.  Consider a sample of a single unit that is a cluster of elements-e.g., a 
single district (or county or school) to represent a state (or country). 
This has no measurability (beyond the single unit) because variations 
between persons (regardless of how many) fail to reflect variations 
between such units in the population. 

2. A sample of two clusters from the population may be judged measur- 
able, because an unbiased variance estimate (UVE) can be computed 
from the sample itself. But this estimate is so variable as to be almost 
useless, and I prefer that “valid estimates” in the definition of 
measurable also imply “useful” estimates, although this requirement 
leaves us without clear boundaries for useful, valid, and measurable. 

3. What then about “interpenetrating” samples with k = 4 or k = 10 
independent replications? Variances computed with 3 degrees of free- 
dom are almost useless in most situations, I believe, and 9 df are 
marginal and need “pooling” of some kind [Kish 1965a, 4.41. 

4. Many good samples contain only single primary selections from each 
stratum, and then they are usually paired into “collapsed strata” to 
yield the differences needed for variance computations. These methods 
yield variances that are judged to be only slightly and tolerably 
overestimates, as described in most textbooks under “collapsed strata” 
[Cochran 1977, 5A.16; Kish 1965a, 8.6B; Hansen, Hurwitz, and 
Madow 1953, 10.131. 

5. Systematic sampling of primary selections presents a problem that in 
practice is also treated adequately with “collapsed strata” of neighbor- 
ing selections. However, because the entire design is determined with 
the selection of the single starting random number, this is a probability 
sample that is theoretically not measurable. The variance computations 
depend on a model of randomness within neighboring strata [Cochran 
1977, 8.10; Kish 1965a, 6.5Cl. 

6. These remarks about measurability concern most of the commonly 
used statistics-such as totals, means, subclass means, and com- 
parisons-in columns 1 and 2 of Figure 2.2.1. Furthermore, they can 
be extended to the complex statistics (coefficients in regressions) in 
column 3 by using methods of repeated replications (resampling, BRR, 
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JRR), even when no mathematical expressions for the variance are 
available. However there may be statistics for which even these robust 
and general methods fail to work and no valid or good approximations 
are yet available (7. I .B). 

7. Measurable samples are often rendered nonmeasurable by failing to 
maintain proper records to identify the numbers of the strata and 
primary selections for the sample cases. 

8. What about k “identical” replications of the same nonprobability 
(judgment, quota) sample? Although a variance could be computed 
around its own mean (expected E ( j ) )  value, this has an unknown gap 
to the population mean Y, hence I judge this model to be not 
measurable. 

Justifications for the preceding statements are scattered in the literature of 
survey sampling, and the indexes refer specifically to collapsed strata, 
systematic sampling, degrees of freedom, and similar terms. Only a few basic 
ideas may be injected here, beginning with the familiar example of the mean 
from a simple random sample, where E[(1 - f ) s 2 / n ]  = ( 1  - f ) S 2 / n  = 
E [ ( y  - f)2]. This exemplifies a general statement for the variance of some 
statistic u: E[var(y)] = Var(y) = E [ ( y  - Y ) 7 .  The first equation denotes 
designs where the computed sampling variance is an unbiased variance 
estimator of the mathematically derived expression for the population 
variance, based on population parameters (S). The second part of the 
equation denotes that this analytical variance expresses the expectation of the 
mean squared errors of the statistic 7 from the population value r. This MSE 
for the sampling distribution of v is needed so that &(u) = ste(7) may 
be used with specified confidence in statements like 7 k t,ste(v). 

When E ( J )  = Y, then j is an unbiased estimator of f and E [ ( y  - Y ) z ]  
is also the variance of j7. If we cannot have E ( 7 )  - r = B = 0 for an 
unbiased estimator, we want to have the bias small. For example, the ratio 
means j = y / n  from most of the complex samples are not strictly unbiased, 
that is, E ( j / n )  =t= Y / N  = r, but the bias can be, should be, and is generally 
small in large samples (4.7). For most statistics from complex samples we 
must aim for mean square errors with small biases. 

Furthermore, for most of those statistics estimates of the variances are not 
unbiased either: E[var(j)] += Var(7) =k E[(y  - f)7, but in  large samples, 
well designed, we can aim at good approximations: E[var(j)] N Var(j)  N 

E [ ( j  - Y ) 2 ] .  In addition, for many statistics mathematical expressions for 
Var(J) are unavailable and/or too complicated for practical use, but with 
repeated replications (BRR, jackknifing, JRR, resampling,) methods it is 
possible to have good and useful approximations, so that E[var(y)] N 
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Figure 7.1.3. Repeated replication when classical methods are lacking. 
Classical methods of computing variances are shown as a bridge of inference (over a river of 

doubts) in two sections: first the computed variance to its expectation: E[var(p)] = Var(p). The 
second section shows that a formula for Var(y) has been mathematically derived to represent 
E [ p  - E(.j7)I2, the variance of the statistic (p) around its own expectation. There may be 
another short gap to the mean square error, E @  - Y ) z ,  for biased estimates when 
E ( y )  - 

The lower bridge shows that resampling methods of repeated replications bridge the 
inference directly, without specific, mathematically derived variances. There are several 
methods: balanced repeated replications (BRR), jackknifes, bootstraps. They are especially 
needed for statistics for which mathematical derivations of variances are not available or 
practical. For these also there may be a gap between the expected variance and the mean square 
error. 

= bias + 0. 

E [ ( j  - Y)2] (7.1D) [Kish and Frankel 19741. This point is illustrated in 
Figure 7.1.3. 

However, more common and difficult than biases are problems of the 
sampling variability of the computed var(7) we encounter in practice. We 
recall that the E[var(j)] = Var(j)  tends to increase with decreasing 
numbers of sampling units; but in addition consider that the var( j )  
computed in any sample also varies around its expected value E[var(J)]. 
Thus in the intervals j i  .t. z,ste(y), not only does ste(J) increase (on the 
average) with decreasing size of ,/%, but tp gets larger for small degrees of 
freedom (df). 

This problem arises frequently in survey sampling, but even more in the 
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design of experiments that must use few replicates. The values of t,95 rise 
abruptly for df < 10: 

df 1 2 3 4 5 6 10 30+ 
~ ~ 

t 9 9  63.7 9.9 5.8 4.6 4.0 3.7 3.2 2.8 

t 9 0  6.3 2.9 2.4 2.1 2.0 1.9 1.8 1.7 
(95 12.7 4.3 3.2 2.8 2.6 2.4 2.2 2.0 

Thus if you decrease df from 27 to 3, you not only increase ste(j7) by an 
expected factor of v6 = 3, but also t,95 by 3.2/2 = 1.6. This poses frequent 
conflicts for experimental and observational studies where numbers of 
primary units are often small (3.1). For example, if two treatments have only 
3 replicates each, the degrees of freedom are only 2(3 - 1) = 4. Theory 
seems to deal more with unbiased variance estimators, and neglects the 
problems of their instability, due to small samples. Beyond some references 
[Winer 1962, 5.12-5.16; Bancroft and Anderson 1974, Ch. 5; Montgomery 
1984, 5.1.11 we can offer only a mere list of possible remedies for small df. 
Rather than defining general terms for multistage experiments, assume a 
comparison of two treatments given to schools x classes x students. 

1. 
2. 
3. 
4. 

5 .  

6 .  

Increase the numbers of schools for both treatments. 
Give both treatments to different classes in all schools. 
Give both treatments to half (or part) of students in all classes. 
Assign all students to both treatments in alternate years. “Crossover” 
designs. 
“Pool” variances. This much-needed topic seems, alas, difficult to treat 
adequately. Pooling and averaging of variances and of design effects 
are practiced but seldom reported [Verma et al. 1980; Kish et al. 19761. 
They are most needed for designs with internal replications restricted to 
only a few sites (3.1B). Searches for “similar” samples must be made. 
For example, repeated or periodic samples may be pooled for more 
degrees of freedom. Experts may help to find valid sources of data and 
to avoid bad mistakes. 
Use variations within schools (either between classes or between 
students) for measures of error. This amounts to treating school as 
“fixed” effects in experimental designs ( i t . ,  statistical inference con- 
fined to the units included in the experiment.) In sampling terms it 
amounts to treating a few schools as the “target” populations of case 
studies (3.1). 
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7.2 GENERALIZATIONS BEYOND THE MODULES OF 3.3 

For an orderly presentation of “designs for comparisons” in Chapter 3, I 
developed four basic modules in 3.3. The principal features of these modules 
are described in 3.2A, and their limitations are admitted briefly in 3.2B. Here 
I intend to show that those limitations are not as narrow as they may appear 
on first sight. It is important to see how those modules and designs can be 
generalized and applied to the complex situations that researchers actually 
encounter and must face. For a prime example, it requires too many 
assumptions merely to state that comparisons are based on simple differences 
(X - v), with the variance simply 202 /n .  I aim here to help the readers 
bridge partly the gap between those assumptions and the reality they may 
face. 

7.2A Other Forms of Comparisons 

The difference (X - 7) is probably the simplest and most commonly used 
kind of comparison. The difference may represent two sets of individuals, 
two measurements on the same individuals, two subclasses of one survey 
sample, etc. For any difference of two random variates X and j we have: 

Var(,Y - 7) = Var(X) + Var(j7) - 2 Cov(X, j )  = 0; + c$ - 2qv,  
(7.2.1) 

and the covariance terms always vanish whenever X and jJ are made 
independent by the design. 

It seems obvious to take the next step to the difference of two differences. 
This may refer to the difference of two changes 

Var[(Z, - X1) - (7, - Jl)] = Var(Z, - XI) + Var(7, - Jl) - 

2 COV[(-% - Xl>(VZ - V d l ,  (7.2.2) 

or to the change in the two differences. For example, consider the 
male/female difference in the change of cigarette smoking between periods 1 
and 2. 

Often, however, the comparison may be better expressed by the ratio (Fly) 
than by the difference. For example, the effects of cigarette smoking are often 
expressed by the ratio of lung cancer rates of cigarette smokers over 
nonsmokers. The variance of the ratio can be expressed as: 
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- Var(X/J) - _ -  Var(i)  +---E-- Var(y) - 2 Cov(X, _ _  J )  - 
(Xi Y)’ (F)2 ( Y)’ X Y  

The second line merely introduces new symbols for those on the top line, 
and it makes clear that the variance of a ratio is similar to the variance of a 
difference, except that all its terms are relative to the respective means of the 
terms. These relative variances (relvuriunces) are computed frequently and 
readily in sample surveys (4.7). 

It is not difficult to compound the preceding two ideas in order to find 
expressions and variances for differences of ratios (Xz/Xl - J z / J l ) ;  for 
ratios of differences (X2 - Xl)/(Jz - J l ) ;  and so on. Also instead of 
differences we may also use ratios of ratios (X2/X1)/Jz/J1), also called a 
double ratio-e.g., the female/male ratio of lung cancer ratios for 
smokers/nonsmokers. Such ratios and linear combinations are used fre- 
quently in the construction of indexes, and their variances have been studied 
[Kish 1965, 12.11; Kish 19681. We can explore their design aspects, not the 
analytical, computational, and mathematical issues, but it is generally 
feasible to approach these with modest technical resources. Conflicts in 
multipurpose design are likely to arise, but these may often be less severe 
than those due to domains (7.3). 

Multivariate regression techniques may also be used for comparisons of 
treatments. These, however, can take so many complex forms that no brief 
listing would be useful here. 

7.2B 

Let us now unravel the assumptions that may take us from the general terms 
(7.2.1) for the variance of a comparison of two means to the simple 2a2/n for 
two independent means and 2(1 - R)’/n for overlapping means. For the 
diffcrence d = (X - 7) = ( x / n , )  + (yln,), the general formula (7.2.1) can 
be written as 

Assumptions for Simple Selection Designs for (X - J )  

Var(d) = Var - + Var - 2 Cov ~ (;) (;.) - ( GY). (7.2.4) 

If the ( ~ / n , ~ )  and (yln,.) are ratio estimates, because the n, and ny denote 
variables from complex samples, then variances for differences of ratio 
estimates must be used (4.7.15). But when the samples n, andn, are constants, 
with no variances, then they can simply be factored out, so that 
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(7.2.5) 
Var(x) Var(y) 2 Cov(x, y )  

Var(d) = __ + ___ - 
n: n; n,n,, 

Now, to get to essentials, let us assume the simplest selection design for 
both n, and n , :  that each was selected with simple random sampling and 
from large or infinite populations, so that factors ( 1  - f )  may be neglected 
in Var(x) = (1  - f ) n x S : .  Then Var(x) = n,S: and Var(y) = n,S,2; hence: 

(7.2.6) 

Here R ,  is the correlation coefficient between the two variables, and n, 
denotes the number of elements common to both of the two total samples n, 
and nv. 

When the element variances are equal, Sz = S; = S2,  then (7.2.6) 
becomes 

(7.2.7) 

When n, = ny = n are equal, and of these cases n,. = P ,  are common to 
both samples, then (7.2.6) becomes 

1 
n 

Var(d) = -[S~: + S: - 2PR,SxSy]. (7.2.8) 

When S: = S; = S2 and n, = n,, = n are both constant, then (7.2.7) 
becomes the simple form we used: 

2s2 

n 
Var(d) = __ [ I  - PR,,]. (7.2.9) 

Without an overlap P = 0 and Var(d) = 2S2/n.  With complete overlap 
P = 1 and Var(d) = 2(1 - R,.)S2/n. Four separate cases are treated with 
a little more detail in [Kish 1965a, 12.41. See also Table 6.2.3 for a 
comparison of four kinds of overlaps in surveys. 

7.2C Unequal Sf, Deft!, Ci, and ni 

Formulas, like 202/n for the variance of two means, often assume- 
implicitly or explicitly-a simple, symmetrical, uniform universe. We need 
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simple, useful tools for dealing with the variable, unequal parameters that 
researchers encounter in practice. We can afford to use, as we must, rough 
approximations about parameters, because their errors will not affect the 
validity of the results, although they may reduce somewhat the efficiency of 
study designs. Useful designs, without great losses of efficiency, can be 
fashioned with rough but reasonable guesses. Errors and losses due to them 
will often be less than those caused by variable domains in multipurpose 
designs (7.3). 

For the difference (X - 7) of two independent samples, allocating the 
same size sample n to each sample produces the least variance 2Sz/n, if (1) 
the element variances S:  = S: = Sz are equal, (2) the element costs 
c1 = cz = c are equal, and (3) the two selections are simple random (srs) 
though the technical, necessary conditions in (7.2.1 1) are looser. Otherwise, 
the optimal allocation of the same total size 2n for the two sample sizes 
n, + nz = 2n calls for 

(7.2.10) n1 - SIIJCI 

n2 S2lJCz’ 
ni a SJ&, that is, - - ~ 

Such “optimal allocation” produces the lowest variance for fixed total cost 
Cjcini, or the lowest cost for fixed total variance (7.3E). Differences in 
element variances Sf and costs ci are common, and often they can be guessed 
to a reasonable approximation at  the time of design. But perhaps even 
greater differences may be found for the design effects, Deft: that have been 
neglected earlier. Instead of (7.2.10) we should use: 

The sources for differences in values of Deftf are too many and complex 
for even a listing here, but Sections 7.1 and 2.6 should be helpful. Using 
Deft2 is merely a simplified, shortcut path into complex designs and it calls 
for expertise and care. Note, for example, that the DeftZ for the difference of 
two means from cluster samples (2.6.3) is reduced by the covariances of the 
clusters; that tends to lessen the relative advantage of overlapping panels, 
denoted by the factor (I  - Rxy)  for simple random samples. 

There are several alternative ways of viewing these factors. Consider 
V: = Sf Deft; as the “effective element variance”; or consider 
nei = ni/Deft? as the “effective element size,” reduced by the design effect; 
and so on, to more complex factors like Zi = Sf Deft?/&, or 
mi = cini/Deftf. Using these factors for comparing designs is useful even 
when we are vague about the parameters. Note that the sample allocation 
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of the n, utilizes all the parameters Sf, Deftf, and c, under a square root 
sign. For example, missing a parameter by a factor of 2 or 4 produces 
size misallocations of only 1.4 or 2. These in turn increase variances only by 
the ratios 1.04 or 1.25. 

Consider, for example, a total sample size of 2n, for a situation where 
n, = n, = n would be the best, but n, = n(l + d )  and n2 = n(1 - d )  
are used instead. Thus the variance of the comparison, instead of 
l/n + l /n = 2/n becomes l/n(l + d )  + l /n( l  - d )  = 2/41 - d2) ,  
where d is the relative reduction of one sample to compensate for the relative 
increase in the other. Thus a misallocation by a factor 2 would mean 
(1 + d )  = 4/3 and ( I  - d )  = 2/3, and 1/(1 - d 2 )  = 9/8 = 1.25. This 
number can be found for K = 2 on the top line of Table 4.5.1; see also 7.3 
and [Kish 19761. 

7.2D 

Of the four factors involved in allocations the sample sizes n, have the most 
flexibility and are most often under our control. The element variances Sf are 
relatively inflexible and fixed, except that errors in measuring may sometimes 
be reduced either with better techniques or with replicated observations. The 
design effects Deft! may sometimes be reduced, but only with drastic changes 
of design, which unfortunately may increase the unit costs c,. The ci often 
turn out less easy to reduce than outsiders may naively hope. 

The possibilities needed for flexibility in the numbers ni must be pointed 
out, because so much in statistics and experimental design is presented in 
terms of fixed and symmetrical numbers n of cases. It is so much simpler to 
frame both theorems and illustrations that way. This limitation is also true, 
for example, of my Chapter 3, which I am trying to correct here. Researchers 
must be stimulated to overcome that rigid framework when they face the 
asymmetries and irregularities of the real, organic world of nature. 

Flexibility for Sample Sizes ni 

1. There is no need to fix exactly the sample sizes for treatments at some 
prespecified numbers n,, which may be difficult in the face of missing 
cases, nonresponses, etc. It is even more difficult when the subjects are 
recruited in groups of unequal sizes, and especially when they are found 
in variable numbers in survey samples. Exact control under those 
conditions would be too expensive and potentially biasing [Kish 19771. 

2. Furthermore, the numbers n, for different treatments need not always 
be made the same, or even similar, even approximately. The researcher 
may try to approximate an optimal allocation with n, proportional to 
S, Deft,/& (7.2C and 7.3E). Or the different ni may be dictated by 
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outside constraints, espeLially in survey samples and in group sam- 
pling, as noted in item 1. The most obvious constraint is when only n, 
cases are available altogether for treatment 1. For example, a limited 
supply of a new medicine or a new technique for one treatment should 
not restrict the controls or the other treatments to the same numbers. 
The most extreme case of inequality is the One-shot Case Study [.Ex] in 
3.4A. In this design, the control may be considered to be missing or to 
be the entire population. 

3. On the other hand, there are also reasons for approximate equality of 
cases n, between treatments. First, unequal n, for optimal allocation of 
n, oc S, Deft,/& is only worthwhile when they differ by ratios of 2 or 
more, and hence the variances and costs by 4 or more (7.3.E). Second, 
we must remember that for a fixed variance of X in Var(2 - y), 
increasing indefinitely the number ny (because it is cheap) will decrease 
only variance of U, and the other portion (perhaps half) will be 
unaffected. For these two very different reasons rough equality of n, 
often prevails in designs. 

4. Exactly fixed sample sizes n, between treatments are also favored by 
two very different reasons. First, in repeated measurements on the same 
cases, the same numbers of elements are used on both (or all) occasions. 
This is the case for One-Group Pre-Post Design (XEZ] in 3.4B. 
Second, the easy computation and mathematical elegance of fixed-size, 
symmetrical designs is worth some effort, when undue efforts and 
constraints are not against them. 

5. In addition to unequal numbers of cases n, ,  unequal numbers of sites 
(groups, units, cities) should also be considered, and they were in 3.1D. 

7.2E Variation in Designs 

Much of this book has been presented in terms of comparisons of two 
treatments: treatments versus control. Of the five basic designs in 3.4, 
numbers 2,  3, and 4 describe essentially two treatments, and designs 1 and 5 
are close variations. However, further variations may also be desirable, and I 
wish merely to touch briefly on the wide range of possibilities. 

First, several controls for one treatment may be used. When a new 
treatment is tested (a new medicine, new seed, or new method of instruction), 
it may compete against several current treatments. These may all be equally 
(un)satisfactory, with relative advantages differing over diverse situations, so 
that no one dominates the others over the population. 

Second, several new treatments may need testing at  the same time. This 
need can arise, for example, for a complex treatment with several separate 
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components, when there is considerable doubt about what combination 
would be the most likely candidate. Then we may also consider several new 
treatments against several controls, with a multifactor design. 

If one new treatment is tested against several controls (or vice versa), we 
should consider the size of the single sample (in cases and sites) against the 
several (k)  in the control comparison. It seems reasonable to propose that the 
size (and expenses) for the single treatment should be greater than for each of 
the k treatments in the comparison, but not as great as for the k treatments 
combined. I assume here that the k control treatments are not simply 
combined into one single control (see 3.1D). 

7.2F Mean Square Errors: Variances and Biases 

In Chapter 3 I combined biases, variances, and costs into a single expression 
for each design in order to facilitate comparisons of their relative advantages. 
Without combining them, some designs (especially 4 and 5 )  would be 
preferred because of lower biases sometimes, whereas other designs (es- 
pecially 1 and 2) would look better in others, because of lower variances 
(both for fixed total cost). It is common statistical practice to combine the 
two components of error into mean square errors = variance + bias2, 
(MSE = a2 + B 2 )  and then use the root mean square error, 
RMSE = J@%%$, as a criterion for making inferences for probability 
statements, for confidence intervals, about statistical results. This concept for 
RMSE is basic in survey sampling, which depends heavily on inference based 
on the normality, through central limit theorems, of statistics based on large 
samples. 

This rational attitude is relativistic: it considers variable errors and biases 
jointly as parts of the total survey error, which should be reduced and (it is 
hoped) minimized within available resources. The statistical sampling model 
proposes yjr = Y j  + Di, = Yi + B, + Vj, for the rth observation on the 
ith element; the deviation Di, of the observation yir from the true element 
value is y ,  - Yj  = Di, = E,  + Vjr,  separating the bias B, from the variable 
error Vi,. “This arbitrary separation is the first modification toward a 
serviceable model, it is still too general to be an adequate frame for the 
concepts and measurements of empirical work.” The second conceptual 
stage in this two-stage “dialectical” model is to recombine the separated 
parts into MSE = (Cg Bg)2 + C, S:/m,.  “The first term is the square of the 
combined bias, which is the algebraic sum of all bias terms. The second term 
represents the sum of all variance terms, representing diverse sources, each 
expressed as a unit variance divided by the number rn, of these units”. [Kish 
1965a, 13.1 - 13.21. This conceptualization should be followed by operations 
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for measuring as many of the errors as resources allow. Those measurements 
should lead to procedures for reducing the errors and the MSE. 

Assuming that researchers have done their best to reduce biases, the next 
best step is to admit their existence into their models, statistics, and 
inferences. “Note then that to err is human, to forgive divine-but to include 
errors in your design is statistical.” [Kish 19781. The next step then would be 
to measure biases with some precision, because this would allow researchers 
to adjust the results accordingly. But this can seldom be done for individuals, 
in the manner we can estimate our “true” heights and weights by adjusting 
for heels and clothes. It can be done for aggregates only now and then, and 
only more or less well; a few examples will help. ( 1 )  Checks against reliable 
outside data may be available, and these contribute to the artistic adjust- 
ments (for “turn outs” and for past biases) with which election polls are 
improved. (2) “Randomized response techniques” have been used to obtain 
aggregate answers with reduced biases [Cochran 1977, 13.17 - 13.18; Warner 
19711. (3) Quality checks (postenumeration surveys) have been used for 
censuses (seldom surveys) to obtain more accurate data. (4) More accurate 
measurements are sometimes obtained by taking advantages of fortunate 
opportunities [Ferber 1980, Kish and Lansing 19541. However, these extra 
data only yield adjustments for the aggregates and means, but generally 
not for individual cases, hence not for relationships, regressions, etc. For 
noncoverage, nonresponses, especially item nonresponses, the adjustments 
and imputations are available only for broad classes as a rule [Kalton 19831. 

We come at last to the usual and important situations where we admit to 
suspecting biases, but we only have vague notions about their natures and 
magnitudes. Theoretically the Bayesian approach would be the best for 
combining statistically one’s guesses about biases with measures of sampling 
errors [Schlaifer 19831. I fear that most researchers are seldom in a good 
position to apply them, even if I could teach them, but the theoretical 
framework is good. I propose that biases, as compared with sampling errors, 
are generally (or should be) smaller; are felt (“known”) with less precision; 
and more prone to be asymmetrical. If biases were “known” with more 
precision, less vagueness, they could be used in adjustments. When biases are 
much larger than sampling errors, we should hesitate to use the sample data. 
Whereas sampling errors tend to be symmetrical, even approximately 
normal, the suspicions and fears about biases need not be so; for example, 
biases are not likely to be large and positive in surveys about crime, abortion, 
or income; each is more likely to be negative. However, usually the 
researcher’s ideas about biases are too diffuse for the demands of Bayesian 
techniques. 

Mean-square errors embody a fundamental idea: that we are most 
interested in the deviation (7 - Y,,,,) of sample statistics from their “true” 
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value. But theoretical concepts surround the subject, beginning with the 
squaring of the deviations before averaging: 

MSE(y) = Ave[j - ~,,,,,12 = Ave[J - Ave(j7)I2 + [Ave(p) - ~,,,,]2 

= cr$ + Bias2. (7.2.12) 

The Bias2 is the squared difference between two constants: the true value 
Y,rue and the mean value, Ave(J), of the sampling distribution of the statistic. 
Conceptually, the deviations must be separated into a variable sampling 
component o2 and the constant bias B 2 ,  so that each may be treated with 
distinct techniques, before they are recombined in the MSE. It is a useful 
concept for comparing and evaluating designs, because it allows for balanced 
considerations of these two basic kinds of errors [Kish 1965, 13.1-13.2; 
Cochran 1.8- 1.91. A full theoretical justification for MSE against possible 
alternatives seems difficult, and some believe that the MSE is simply self- 
justifying with its convenience and with its squared “loss function.” 

For comparing designs the MSE seems to me more useful than in 
the analysis stage. For comparing designs we note that the error rates of 
JTazfB2) and of a or of the same length are rather similar for bias 
ratios = Bjo < 1 and even beyond. Thus using d m  is rather 
robust for designs. However, if in the analysis, o is used, because the bias is 
not available, instead of , / ( ( ) ,  then severe understatement of errors 
arise for Bjcr as low as 0.2 or 0.4 [Cochran 1977, Tables 1 . I  and 1.2; Kish 
1965a, Figs. 13.811 and 1111. Of course, if B is ignored in designs, then those 
also suffer similar distortions. 

The relative size of the bias, expressed by the “bias ratio” Bjo, will differ 
widely for the many variables and much larger number of statistics of 
multipurpose surveys (7.3). We may expect that for domain statistip, 
especially small domains, as the values of aincrease, but not the values for B, 
the values of B j o  will decrease as sampling errors come to dominate. 
Further, for differences ( j ,  - Y h )  of domains the biases often tend to 
cancel, and then sampling errors predominate as the bias ratio decreases 
(Figure 2.4.1) [Kish 19691. 

7.3 MULTIPURPOSE DESIGNS 

7.3A Purposes and Motivation 

Most studies have several or many purposes present at  their conception, and 
during the planning stages. In addition, typically many more purposes 
emerge later during the analysis of data and during their interpretation and 
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utilization. “Should have many purposes” may often be more correct than 
“have present at their conception,” because unfortunately the real multi- 
purpose nature of many studies may lie hidden under the surface of the usual 
oversimplified discussions of study designs. This seems most clearly evident 
for sample surveys. Some surveys may even be “multisubject”; for example, 
data on education, economic status, and fertility may all appear jointly 
among the principal purposes for the same single survey. Under those 
principal purposes we refer only to explanatory variables and not to 
disturbing variables to be controlled. 

While it may be true that most surveys have a single subject (e.g., fertility 
or education or economics as their principal purpose), several or many 
variables are often used to measure, describe, evaluate, and analyze that 
principal subject; for example, economic status may concern data on income, 
wealth, savings, and spending, and then each of these in turn may need 
measurements on several variables. Second, even a single variable (e.g., 
yearly income) may be described by several statistics; for example, mean 
income and median income, quartiles, and deciles may be presented from the 
same data, as well as regressions of income on other variables. Conflicts of 
sample design arise, because each of these statistics may benefit from 
different “optimal” allocation of sample sizes. Third, even more drastic 
conflicts arise from the diverse needs of different domains of analysis (2.3); 
such conflicts are treated in 7.3B and 7.3C. 

In addition to those variables, statistics, and domains that are anticipated, 
planned and designed for at  the outset, some other and unanticipated uses 
of the data are typically discovered during the analysis. “Serendipity” is 
common in research, and researchers should look for “side effects” of the 
treatments, beyond the expected responses; as in “Murphy’s law,” the 
unexpected always happens. The various side effects may be either harmful or 
beneficial, or both. But how can one expect and plan for the “unexpected”? 
Though difficult, the task is not hopeless: Answers lie in the direction of 
robustness and sturdiness, even at the sacrifice of fine-tuned “optimality” for 
only one or a few statistics (7.3C). 

Multipurpose surveys are common in practice, why then are they so 
neglected in sampling theory? Because multipurpose theory would become 
too difficult and complex, and sampling theory is complex enough already. 
Furthermore, even the descriptions of actual sample designs tend to follow 
and borrow the prestige of theory, rather than to portray the many 
compromises of complex reality; thus those descriptions often pretend to be 
unipurpose. Many actual designs depart in the direction of robustness (e.g., 
with self-weighting, epsem samples), but explicit planning and design of 
multipurpose samples seems to be rare. 
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I discuss multipurpose design chiefly for sample surveys (which I know 
better), but what about other kinds of research in general? I suspect that most 
situations for observational studies are also multipurpose, though perhaps 
not as often or as strongly multipurpose as for surveys in general. As for true 
(ideal) experimental designs, the classical and basic theory is couched in 
terms of single tests of significance for rejecting a null hypothesis of zero 
difference between treatment means of a prespecified response variable. That 
situation seldom describes the real purpose and methods of actual experi- 
mental research, especially social research, I suspect. 

On the other hand, it is possible that many evaluation studies (3.7) have 
only a single purpose, or a few related principal purposes, at least at the 
outset. They would often be observational studies and sometimes perhaps 
true experiments. But even in such studies, unexpected and side effects 
surface later, and then have to be considered. 

Finally, the multipurpose framework has general scope; thus it can 
accommodate unipurpose design as merely a special case. 

7.3B Areas of Conflict 

Considerations for different purposes naturally lead to conflicting design 
specifications. First, the requirements for precision differ for various sta- 
tistics. Second, sample sizes and costs may also differ, but these may be 
considered jointly with those precision requirements, within the same context 
of conflicts between purposes. Third, the parameters will also differ between 
statistics; for example, sampling errors (expressed probably in S2 and Deft2) 
differ between variables. 

Several areas of conflict should be noted here. First, the total sample sizes 
n may be very different for diverse variables, and even for different statistics 
computed from the same variable. These differences can be much greater for 
domain statistics, which are often neglected but may often vie with the 
overall statistics for importance during analysis. For example, in a fertility 
survey, the rates for provinces and for age-specific rates (for single-year or 
five-year domains) may be as important as the overall national fertility rate, 
but those domain statistics would require samples ten or a hundred times 
larger than overall statistics, if the same relative precision were desired. 
Comparisons between two (or more) domain rates have even higher errors. It 
is often said that many samples (e.g., of size n = 10,000 or larger) are too 
large for the overall precision needed, especially in light of the errors of 
response and nonresponse, which may dominate sampling errors. However, 
for the domain statistics and for comparisons, the sampling errors may well 
dominate, because these errors become much larger, whereas nonsampling 
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errors do not increase (Figure 2.4. I ,  7.2F). Similar considerations also hold 
for comparisons between treatments in observational studies and experi- 
mental designs. 

Second, after considering the overall sample size n, related questions arise 
about numbers of units at various stages of selection. For example, suppose 
about 2500 students are to be selected for each treatment. These could come 
from 100 classes of about 25 students each, with 4 classes from each of 25 
schools (roughly); but the product of schools x classes x students has a 
great deal of flexibility, and considerations of costs and sampling errors vary. 
For sampling errors the “optimal” (preferred) considerations can vary 
greatly between statistics; and some estimates (or guesses) of factors and 
components of sampling errors and costs may be needed. 

Third, researchers may want to use greater numbers of treatments for 
some of the explanatory variables than for others. Some treatments may be 
much more expensive than others, and some response variables may be 
especially expensive. For example, short-term responses may be obtained for 
all treatments, but long-term responses, requiring expensive followups, may 
be reserved for a subsample of them (3.1D). These conflicts may arise both in 
experimental designs and in observational studies. 

Fourth, the allocation of sample sizes to strata (or to blocks in experi- 
ments) should depend on the characteristics of variables and of statistics. But 
the “optimal” (preferred) allocations may be quite different for various 
purposes, thus causing conflicts for the actual allocations [Kish 1965a, 3.5; 
Kish 1961; Kish and Anderson 19781. 

7.3C 

The topic of multipurpose design has been neglected and avoided, because it 
is difficult in several ways. First, the several (many, principal) purposes must 
be formulated explicitly in statistical terms that can also serve in the formulas 
for their comparisons and compromises. Obtaining such an explicit, formal, 
and “complete” list may be the principal obstacle. Second, estimates of the 
variance and cost factors are needed for each purpose. Third, values must be 
assigned to the required precisions for all the purposes. Fourth, from the 
preceding values and estimates a mathematical formulation must be created, 
to arrive at the solution of a single design that will be actually used. The 
computational tasks of such solutions have been eased by electronic com- 
puters, but the conceptual and theoretical tasks remain. 

In the face of such difficulties it is no wonder that discussions of 
multipurpose designs are avoided in the textbooks and even in the descrip- 
tions of actual designs. Often a single statistic (e.g., the mean) of a single 
principal variable is presented as the single purpose of the study. In the 

Paths to Resolutions and Compromises 
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framework of multipurpose design this is equivalent to assigning zero value 
to all other purposes. The impact of this pretense may be softened by 
another: that other principal purposes would result in similar allocations. 
But this pretense should be buttressed with calculations of the first three of 
the four preceding steps. 

Beyond calling attention to the relevance of multipurpose design, what 
can I write in this nontechnical book about that technical and complex 
subject? Happily, we may point to two available technical approaches to the 
joint solution of conflicting allocations for the fourth step, after completing 
the first three steps. 

One approach involves iterative nonlinear programming, which satisfies 
jointly for minimal costs the specified requirements of precisions for all of the 
stated purposes. Solutions to diverse problems have been published by 
several authors since about 1963 [Chatterjee 1972; Huddleston 1970; Kokan 
and Khan 19671. These elegant solutions exploit the capacities of modern 
computers. They often come up with too high “minimal” cost, because the 
specified “required” precisions are often unrealistic. Then , the projects 
“requirements” can be rescaled down to reasonably available total cost and a 
new solution can be recomputed. Such recomputations, however, point to 
the unrealistic nature of the entire procedure, which depends on precision 
“requirements” that usually cannot be either prespecified or fulfilled. 

A very different approach calls for averaging between all the “optimal” 
(preferred) allocations for various purposes, by minimizing the combined 
(weighted) variance either for fixed cost or for fixed sample size. I prefer this 
solution, which compromises between different allocations, each of which 
would optimize for only one purpose. It involves assigning relative values of 
importance to all the listed statistics, and this may seem difficult. But the 
other two alternatives are more extreme, and they should be even more 
difficult: either to specify the required precisions of all statistics for the first 
approach, which then assigns arbitrarily equal weights of importance to all of 
them, or to specify one statistic for the total weight of one, and thus zero 
weight for all other statistics. 

Furthermore, compromises are generally feasible and worthwhile, because 
the allocations are insensitive to moderate changes of weights (as is often 
true in statistics). After all, changing the relative weights (all Wg < 1 and 
Y, Wg = 1)  by ratios of, for example, 2 or 5 should be less drastic than 
assigning the total weight 1 to one variable and 0 to all others, a process that 
implies infinite ratios of importance. 

Three examples in 7.3D illustrate an averaging method that allows 
surprisingly good compromises between conflicting allocations and that is 
developed in detail and with references to related methods elsewhere [Kish 
1976, Sections 6 and 7.61. First, we denote with CjV$/ni the variance 
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attainable for a variate (or statistic) g with the allocation of sample sizes nj  for 
the ith component of variation. Then let Vg' (min) denote the minimal 
variance attainable with optimal allocation of the sample sizes, that is, with 
the ni optimal for the variate g. Thus 

1 + L,(ni) = ( X i  V$/ni)/V,Z(min) = C j  Cjj/nj (7.3.1) 

may denote the ratio of increase (with the allocation ni)  in the variance of the 
gth variate over the minimal variance; and Lg(nj) is the relative loss over the 
minimal value 1. These ratios and losses will differ among various statistics g 
that represent the different purposes of a multipurpose survey, and those 
differences represent the conflicts between various allocations for any fixed 
total cost. 

To compromise between the conflicting allocations, I propose an average 
loss function for any set of allocations nj  of the sample sizes, where the loss 
for each variate g is weighted with a factor Ig assigned for its relative 
importance: 

This may also be written as 1 + L(ni) = C i Z f / n i ,  where Z: = 
C, I, Vj j /  Vi(min), and this function may be minimized, with the sample 
sizes ni optimized for the joint function, as illustrated in 7.3D. 

7.3D Examples of Compromises 

I t  should be both instructive and reassuring to see how successful some 
reasonable compromises can be even for the rather harsh tests posed by our 
examples of multipurpose designs. We may use the conflicts between designs 
for overall means (Z WhFh) and for separate domain means ( Y h )  as our prime 
examples, because such conflicts are important and common, yet simple 
enough for illustration. The designs for H separate domain means J h  may be 
summarized by their average C j h / H .  Furthermore, the designs for these 
averages C j h / H  may conveniently also represent designs for the com- 
parisons (7, - Yb)  of means, which are also important. I urge this 
convenient double use of X J h / H ,  because the variance of either the sum or 
the difference (7, t. yS) of two independent means is d / n ,  if each mean is 
based on 2n independent selections (I.I.D.), and if o2 is the element variance 
for both. That variance is also 0 2 / n  for the average (j, + j b ) / 2  of two 
means, if the sample sizes are n/2 each, because [ 0 2 / ( n / 2 )  + 02/(n/2)]/4 = 
02/n. Thus the averages, sums, and differences of independent sample means 
have the same basic forms; they differ only in the constants involving sample 
sizes. 
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To assume, for convenient simplicity, that the element variances OZ are 
similar for all means, seems disturbing. Not only may the element variances 
ai differ between the separate subpopulations, but the separate sample 
means y h  may also be subject to different design effects D;4 (see 2.6), so that 
their variances should be expressed as Di@/nh. Therefore we shall have to 
assume that a2 represents a proper average of the separate element variances 
D i d ,  so that we may concentrate on the effects of varying the sample sizes 
nh. Because we investigate large variations in those sizes nh, the assumption 
of an average value a2 should not be too misleading. 

Another simplification is the use of sample sizes nh to denote effort: A fixed 
total sample size n = Znh provides the base for comparing relative va- 
riances. However, a fixed total effort C = X chnh may also provide the base 
for comparing relative variances when element costs ch differ between the 
subpopulations h; the comparisons of efficiencies for fixed C and for fixed n 
are similar. For example, it is possible that for large domains (large wh in the 
examples below) the element costs ch may be somewhat greater, thus 
“dampening” allocations proportional to the wh (if the differences in the ch 
are great enough, e.g., by factors greater than 5).  

I find it more convenient and realistic to fix either the total sample size n or 
the total cost C and then to compare relative variances. On the other hand, 
alternative methods may also involve comparing relative total sample sizes or 
efforts C for fixed variances. 

The first example concerns two subpopulations, one of which comprises 
the portion W ,  = W of the entire population and the other of which 
comprises W ,  = 1 - W. The W can take different values, and W = 0.5, 
0.2, 0.1, 0.01 are shown in Table 7.3.1; values of W > 0.5 would be 
redundant, because results for Wand 1 - Ware symmetrical. 

The first set of results shows results for “equal allocation,” that is, 
n ,  = n,. This is optimal allocation for the average Z y h / H  = (yl f y2)/2, 
hence also for the difference (yl - y2), as is shown by the minimal relative 
variance of 1 on the second line for all values of W. On the other hand, for 
the weighted overall average Z Whjh, the relative variances increase from 1 
for W = 0.5 to 1.36, 1.64, 19.6 for W = 0.2, 0.1, 0.01. This increase has a 
limit of 2, as the optimal sample size n2 = (1 - W ) n  increases toward n 
instead of the allocated 4 2 .  

The second set shows allocations proportional to size W, so that n ,  = n W 
and n,  = n( 1 - W).  This is “optimal” for the overall mean Z whyn on the 
first line, as is shown by the minimal variance of 1 across all values of W. On 
the other hand, the variances for C y h / H  = (yl + J 2 ) / 2  increase from 1 for 
W = 0.5 to 1.56, 2.78, 22.25 and without limit, as n l  = nW decreases 
toward 0. 

The relative variances for the differences ( J l  - y2) behave similarly to 
those for the sum (J1 + y2) and to those for the mean (v, + 7,)/2 above, 
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except for the constant 22 = 4. For an extreme example, with allocation 
KWh for W = 0.01, hence for a sample size n ,  = W , n  = 0.01n, the relative 
variance for the mean is shown as 25.25. But the absolute variance for the 
difference is 4 x 25.250Z/n = 101oz/n, whereas the variance for the overall 
mean is d i n .  With equal allocation of n ,  = n 2 ,  the relative variance for 
C j h / H  is shown as the minimal I ,  hence the absolute variance for the 
difference for ( j l  - y2) becomes 4oZ/n, whereas the absolute variance for 
Z W h j h  is 1.96 d / n .  

The third set shows relative variances for allocations proportional to m, geometric means between equal allocations and allocations propor- 
tional to wh. These compromises are very effective: They bring large 
decreases in the losses for only moderate increases over the minimal values 
of 1. 

The fourth set gives “optimal” allocations for compromising between the 
duakpurposes of minimizing variances jointly for both C Wh-h and C j h / H .  
These “optimal” allocations of nh are proportional to J-l- (W,2 + H - * )  and 
are justified elsewhere [Kish 1976, Sections 6 and 7.61. These relative 
variances are generally lower than those for the other compromise with 
A, though not always. 

A better way to judge the relative efficiencies for the compromise, and 
indeed for all four sets of allocations, is to compare the “joint” relative 
variances on the third row for each of the four sets. These joint values 
average the two relative variances, and clearly the “optimal” compromise 
J(W,( + H - * )  is better than the f i  compromise for each column. For 
the joint purposes, both compromises do  considerably better than the 
unipurposc allocations of the first two sets. It is also clear that for very low 
values of W the extremely low values of nh  = WIln should be avoided. 

Another interesting example concerns the populations of 133 countries, 
ranging in size from 0.2 to 200 millions, a range of 1000 in relative sizes. For 
this problem of allocation (for the World Fertility Surveys) 1 only omitted, 
for practical reasons, the four largest populations, all over 200 million, and 
those under 0.2 million. Their inclusion would raise the relative variance of 
sizes W,l from 2.5 to 12 and would make the results even more dramatic. 
Note that relative variances for equal sample sizes, minimal at I for separate 
country estimates, would increase to 3.34 for the global weighted average. On 
the other hand, proportional allocation, minimal at 1 for the global average, 
increases by 6.86 on the average the variances of separate country estimates. 
The compromise works dramatically well for both purposes. But the 
statistical “optimal” allocation oc ,/( W,2 + H - 2 )  works sensibly even 
better. 

The “optimal” allocations have further flexibility, because they were 
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TABLE 7.3.1. Variance Increases (over optimal 1)  for Four Allocation Methods; 
Two Examples 

W 
Allocations 133 

of nh Purpose 0.5 0.2 0.1 0.01 Countries 

Equal 
K I / H  

W h Y h  1 1.56 1.64 1.96 3.34 
YhlH I 1 1 1 I 

Joint 1 1.28 1.32 1.48 2.17 

Proportional c W h y i t  1 1 1 I 1 

fx Wh Joint 1 1.18 1.89 13.12 3.93 
to size ? h i H  1 1.36 2.78 25.25 6.86 

i 
Square 
root 
4 K  

c Wit ?)It 1 1.12 1.12 1.19 1.35 
~ h / H  1 1.08 1.33 3.01 1.54 

Joint 1 1.10 1.22 2.10 1.44 

Optimal why t i  1 1.08 1.21 1.42 1.31 
2 + H - ?  Yh i H  1 1.12 1.16 1.17 1.28 

1 1.10 1.18 1.30 1.30 
cx JWIt 

Joint 

derived as a simple, even-handed compromise between the two specified 
pur oses. The most obvious modification yields allocations proportional to J’m, where I,. and Id are relative weights of importance 
( I ,  + Id = 1) for the combined mean and for the separate domain means. 
Moderate weights (I, . /Id from 0.5 to 4) have been shown to have only slight 
effects [Kish 19761. 

“Optimal” allocation makes interesting and good common sense on 
second thought, although its origin and justification are mathematical. The 
allocation n/lcc ,/( W,Z + H - 2 )  has the lower limit of I /H as Wh -+ 0, and 
that “floor” is comforting for data based on small domains. At the other end, 
for large W,! it tends to be proportional to Wh and that is good for large 
domains. On the contrary, the geometric mean of allocation of n h  a 
ha5 an immediate first appeal, but it is disappointing on second thought. It 
goes down toward nh -+ 0 for small w h ,  and it rises too slowly for large w h .  

The advantages of “optimal” allocation show up in Table 7.3.1 in the 
reductions of the variance for the average domain means Z Y I , / H ,  with the 
value 1.28 instead of 1.54 for the f i  allocation. 
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7.3E On Optimal Allocation 

These brief remarks are needed because several references have been made to 
this topic. It is treated and indexed in all textbooks on survey sampling [e.g., 
Cochran 1977, 5.5, 6.14, 10.6; Kish 1965a, 8.51, but I especially recommend 
Kish [ 19761. The treatments assume that the variance and the cost both have 
linear forms in several components denoted by i(i = 1, 2, . . . I ) ,  so that 

Var(y) = C Vf/ni  + V ,  and Cost(y) = ‘Cc,n, + C, . (7.3.3) 

The components may be strata or stages of sampling, and may be treatments 
in experimental design, etc. Note that in those linear forms the variance 
components are inversely proportional and the cost components directly 
proportional to the sample sizes ni for the components. “Optimal allocation” 
refers to allocating the ni so that either the variance or the cost is minimized 
with the other fixed at a required level. That is 

vc = (C vi’/n;)(Ccin;) (7.3.4) 

is minimized with one or the other term fixed at V,or Cf. This results in the 

optimal ni cc Jm) = v,/&, (7.3.5) 

and in either (C V , f i ) * / C ,  for the minimal variance or (C Vi&)z/V,  for 
the minimal cost. The factors of proportionality for the ni are merely scaling 
factors. The simplest application is to stratified sampling where the variance 
terms are ‘C Vf /n ,  = C WfSf/ni ,  and the optimal ni cc WiSi/& ; i.e., the 
sample sizes should be proportional to the sizes and standard deviations and 
inversely proportional to the square root of the unit costs. Note that the 
square root for both variance and cost factors “dampens” the sharpness of 
the optimal sizes, so that moderate departures matter little. 

For example, missing either cost or variance estimates by a factor of 
4 misses the optimal sizes by a factor of J;? = 2 only, and that increases 
variances only by factors between .04 to .125, as may be seen in the column 
for K = 2 in Table 4.5.1. When the ci are relatively constant, the n = I: ni is 
fixed or minimized and the optimal n, K V,.  

For the difference of two means the variance is Si/nN + S$/nh,  assuming 
independence for the means and for the selections; if this srs assumption does 
not hold, the S: may be adjusted with “design effects.” Then for fixed 
n = n,, + n h  the optimal n, K S, and optimal nn/nh = s,/sb. 

These ideas have been widely applied, amplified, and modified in the 
literature. We are interested in their application to a multipurpose situation, 
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where optimal allocation is sought for a compromise variance for several 
(many) variates 

X g  Zg[Xi V;;/ni)/Vi(rnin)] = Xi[Eg Zg Vii/Vlmin]/ni = C j  Z j  Z / n i ,  (7.3.2) 

that we have seen in 7.3C. Here Zi = Eg Ig Vli/V: (min) is the variance 
component to be minimized for fixed Ccin i .  It is an average that uses Zg as 
factors of relative importance of the variates denoted by g (CZ, = I). For 
each variate g the relative variance is given as Vii /Vl  (min): the ratio of 
the variance with the ni allocation to the minimal (optimal) for the same 
variate for the same fixed cost. Optimal allocation for the compromise leads to 
optimal ni K Zi/&, similar to the simpler cases [Kish 1976, Section 61. 

7.4 WEIGHTED MEANS: SELECTION, BIAS, VARIANCE 

7.4A A Framework for Common Problems 

Although weighted means are frequently needed for applications, they are 
neglected in modern statistical textbooks, which begin and end with identical 
and independent distributions (I.I.D.), where weights need not intrude; but 
they are treated by some older books [Yule and Kendall 1965, 14.1 1-14.201. 
When encountering weighting problems, statisticians can often work out 
their own solutions from basic principles. Yet I expect that the fundamentals 
in 7.4C will be useful to some. 

Weighting is essentially a problem in estimation, but in this book we 
continue to concern ourselves chiefly with its design aspects. In 7.4B we 
encounter three interesting problems of selection effects, each of an 
apparently distinct type, found isolated in the literature. But these can all 
be seen as having a common core in weighted means, and this is also a clue 
to other problems of this general kind. 

Weighting is also the clue to another problem of design, treated in 7.5 as 
“Observational Units of Variable Sizes.” Another kind of problem was dealt 
with in 4.5 as “Standardization: Adjustment by Weighting.” 

7.4B Selection Effects from Multiple Contacts, Family (Group) Members, 
Waiting Times 

a. Sampling Contacts with a Facility. These may refer to sampling the 
distinct visits by persons to hospitals, libraries, theaters, stores, etc.; shares 
owned by shareholders; visits to doctors; etc. Consider, for example, “A 
Pitfall in Sampling Medical Visits” [Shepard and Neutra, 19771: 
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Samples of outpatient visits often must be used to identify users of a health 
facility with a given chronic condition. Such samples can lead to biases, 
however, because patients with more frequent visits are overrepresented. These 
biases can be avoided by a weighting procedure in which each sampled visit is 
weighted inversely to the number of clinic visits made by that patient during the 
sample period. This procedure proved critical in estimating the number and 
characteristics of hypersensitive patients seen in the medical clinic of a teaching 
hospital. The unweighted estimate of the number of hypertensives was 7,373 
patients, more than three times the weighted estimate of 2,250. Similarly, the 
number of visits per year by these patients would be overestimated by almost 
50 per cent without weighting. The estimated proportion of hypertensives still 
under treatment after 18 months was 68 per cent without weighting, compared 
to 51 per cent with weighting. Thus biases from failure to weight may be 
substantial. Analogous biases and solutions apply to other sampling problems 
in health services research. 

They cite many other examples, and only in some of them was the selection 
bias corrected with weighting. They also note that, “The alternative to visit- 
based sampling is direct sampling of patients from a list of currently active 
patients at  a facility.” 

b. This type of bias occurs often and  in 
many forms as three examples may show: 

1. “Suppose a s  an example that one wished to estimate the proportion of 
school families in a given city that have a particular characteristic-say, the 
proportion of school families that own their own homes. Suppose that the 
sample is drawn from the school records in such a way that each schoolchild 
has the same chance of being included. . . . Large families are over- 
represented, and  smaller families under-represented . . . . The biases intro- 
duced by the method outlined above can be avoided o r  eliminated. (i) Bias 
can be avoided by sampling families.. . . (ii) Bias can be eliminated by 
proper weighting. . . . (iii) Bias can be avoided by associating family data 
with a unique member of the family” [Hansen, Hurwitz, Madow, I, 
Section 2.4BI. 

2. Another example from a news report from Thailand: “When the 
principal asked the boys and girls to tell him how many brothers and sisters 
they had, the children recalled the names of their brothers and sisters and 
counted them on  their fingers. Eight o r  nine was a n  average total.” 

3. Preston [1976] notes that, “A widely recognized statistical fallacy is to 
use a value of c derived from survey responses of offspring a s  an  estimate of 
x, the average family size of their mothers,” and that, “the mean family size 
of a child (C) will be equal to the mean family size of women (2) plus a term 
(o:/X) equal t o  the variance of women’s family sizes divided by their mean.” 

Family Size as Selection Factor. 
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Preston proceeds to show sizable differences between C and x for various 
years in the United States. 

If  W ,  is the proportion of women with X children, their average is 
simply x = C W,X. But the proportion of children who come from 
families of size X is 6, = W ~ r X / C  W,X = W,X/x. Hence the mean of 
these is C = Cb,X = C W x X 2 / x  = [C Wx(Xz  - X ) 2  + X WxX2]/,? = 
$/x + = x( 1 + q:/x2). Thus the relative increase of the biased means 
C over x is represented by o:/x2 = C:, the “relvariance,” or square of the 
coefficient of size of the families. (Or of similar groups in other selection 
situations.) This represents an extreme positive bias, with correlation of + 1 
between the source of the selection bias and the variable presented, both 
being X ,  the family size (number of children). This was true in examples 2 
and 3 ;  but in example 1 the variable was home ownership Y ,  and in this more 
general situation the correlation between X and Y is R,, < 1, less than 
perfect. The biased mean is Y(l + ox,/xY) = Y(1 + RC,C,). (7.4C) 

c. From a newspaper: “A committee of the American Bar 
Association reported in 1968 that the average Federal prison sentence being 
served in 1965 was nearly six years. . . . In contrast, sentences over five years 
are rare in most European countries.” If the average length of a sentence is 
x = C W,X, the proportion of “sentences being served” of X years will be 
b ,  = W , X / x  and their mean will be c = 2 + o$/ f ,  considerably higher 
than the average of sentences. 

More common than leaving prison is the problem of “waiting times” for 
buses. Suppose you are waiting daily over the years for a London bus that 
starts out on schedule from the suburbs, but after delays in central London, 
arrives at your corner with intervals of Xminutes between buses, and X may 
be 0, I ,  2, 3 ,  . . . , etc. The proportion of intervals of X minutes is W ,  and the 
mean of these is a mere x = C W,X(similar to the mean of the bus schedule, 
incidentally). But the longer the interval before any one bus, the more people 
find that bus, so that b, = WJjC W,X is the proportion of people who find 
the interval X .  The mean of these occurrences is c = Cb,X = 
C W , X 2 / x  = x( 1 + C:) as before, greater than Tin proportion to C:. The 
perception of the waiting customers of a much worse average than the 
scheduled x is correct! Incidentally, a survey at bus stops, averaging the 
waiting times of individual customers, would also reveal the mean c for 
customers, but only the mean X for buses. 

At busy airports you may have noticed that many check-in counters have 
0 or only 1 or 2 persons waiting, and the average length of the queues, 2, 
may be only 2 or 3. But we, the customers, usually find ourselves in the long 
lines, whose average length is c = x(l + Cf), which may be 10 or more. 

This problem of “waiting times” or queues also receives a more math- 

Waiting Times. 
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ematical treatment for continuous time and distribution theory (Poisson 
arrivals). The result E(C) = E ( X )  + Var(X)/E(X) = E ( X ) [  1 + 0 3 E 2 ( X ) ]  
is essentially similar [Morrison 1979; Feller 1971, Eq. 4.161. 

Formulation of the nature of the bias between the weighted and the 
unweighted mean is developed in 7.4C, point 5. A few words here may be 
useful for dealing with the problem. First, sometimes the problem and 
population may be redefined so that the weighted mean (denoted by c above 
and Y, in 7.4C and 7.5) is used because it better describes the situation. We 
implied so much for people waiting for buses or airline counters in c, and it 
also may be true for some situations of family size in b, and some of the visits 
and contacts in facilities in a. In any situation it is worth raising the problem. 
Second, if the unweighted mean (x or r,) is needed, it may be possible to 
devise means for counting the distinct persons (or other units, such as 
families, buses, etc.). Third, the preceding aim can sometimes be achieved 
with a unique counter-for example, the first visit to the hospital, or the 
oldest child in the family; and the others (visits, children, etc.) become blanks 
in the selection process. Fourth, if all persons, for example, are selected, the 
size of the unit must be determined for inverse weights of 1/N, to compensate 
for the selection probabilities proportional to N ,  (7.5.4). 

7.4C Variances and Biases in Weighted Estimates 

Some fundamental formulas about weighted estimates seem desirable here, 
because we use them so much in this section and elsewhere. These deal with 
common problems in practice, which are often neglected in introductory 
textbooks, where all the attention is on n random variables, independently 
and identically distributed. Yet the following fundamentals can be presented 
simply, assuming only basic statistics from the reader [Kish 1965a, 2.8Al. 

1. The expectation (expected value) of a random variable (observation, 
event, statistics) y, is denoted Exp(yj). The expectation of yj times a constant 
factor W plus a constant B (bias) is: 

EXP( Wyj + B )  = W Exp(y,) + B. (7.4.1) 

The variance of ( Wyj + B )  is affected by the factor W but not by B: 

Var( Wyj + B )  = W 2  Var(yj) 

and Ste( Wyj + B )  = I WISte(yj). (7.4.2) 

The mean square error of yj around the fixed population value Y :  
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MSE(y;) = ExP(~;  - Y)l  

= ExPbj - ExP(yj) + ExP(Y;) - Y12 
= Expbj  - Exp(yj)lz + [ExP(Y;) - Y12 
= Var(yj) + BZ (7.4.3) 

when B = Y - Exp(yj) is the bias that measures the difference between the 
expectation of the statistic and the population value r; thus B = 0 and 
Exp(yi) = Y describe an “unbiased estimator” y j  of Y. The variance Var(yj) 
is the mean square of the deviations Exp[y, - Exp(yj)lz of the variable y j  
around its own expectation (mean value). The capital letters for these 
functions denote that they represent mean values over all possible samples. 
The variances computed from samples should be denoted var ( y j )  to show 
that they are variables subject to sampling errors. Then Exp(varj) = Var(yj) 
denotes the situation (not always) when var, is an unbiased estimate of the 
variance; but often Exp(varj) = Var(yj) + Bias2[var(y,)]. 

2. The variance of the sum Xyj of independent variables y j  is the sum of 
their variances: 

Var(Xyj) = XVar(y,) = XS;. (7.4.4) 

If the y j  are not independent we also have their covariances: 

Var(Cy,) = CVar(yj) + CCov(y,yj) = CS’ + CSU.  (7.4.5) 

For the sum of n variables, there are n variance terms, plus n(n - I) 
covariance terms that have zero expectation for independent y j ;  a total of 
n2 terms from the n x n matrix. 

3. When the n variances are all equal S/” = S2 and 

Var(Cyj) = nS2 (7.4.6) 

This is the variance of the sample sum C y j  for an srs sample of n cases 
selected independently from the same identical distribution with variance S2 
for individual elements. Here we do not distinguish cr2 = S 2 ( N  - l)/N, and 
we disregard also the factor (1 - n / N )  for finite population, which would 
give Var (Xyj )  = (1 - n/N)nS2 [e.g., Kish 1965a, Section 2.81. 

4. Adding a constant to the variables also adds them to the expectation of 
their sum, so that Exp[C(y, + k,)] = Exp(Cyj) + Ck,; but they have no 
effect on the sum’s variance: Var(C y j  + kj)  = Z Var(yj). But multiplying by 
a constant factor brings the square of that factor to the variance: 
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(7.4.7) 

and if either is a constant, W, = W or  S, = S: 

Var(C Wy,) = W2CS:  or  Var(C W’y,) = S 2 C  W f .  

In particular the factor l / n  is used to compute the mean from the sample 
total: y = C(y,/n) = C yJ/n. Its variance is Var(J) =CS:/n2. When all 
S: = Sz constant, as in srs, then we get the well-known 

Var(y) = nS2/n2 = S2/n .  (7.4.8) 

In stratified sampling the selections are independent between strata and 
the weighted mean over the strata is C why, = C WhYh/n/], with the relative 
weights C W ,  = I ,  and often w h  = NIl/N,  measured in population counts. 
Since the W,N, and nh (stratum sample sizes) are all fixed constants from 
(7.4.6) we have 

and 

= C W~.sf/nh for srs within strata. 

5. Differences (biases) between weighted and unweighted means 
(Y , , .  - Y,,) pose problems in many situations (7.4B and 7.5). A simple, 
general expression that relates the differences to coefficients of correlation 
and of variation can be useful for distinguishing the likely presence of 
formidable from only negligible biases. Suppose that a population com- 
prises A units and that Y ,  is some value of the ath unit. From the Y,, values 
of all the A units one can define the usual unweighted mean 

r, = C a  Y , / A .  (7.4.10) 

In that unweighted mean each unit received the same constant 1/A as 
weights. On the other hand, sometimes one may want to assign variable 
weights and define a weighted mean 

N ,  (7.4.1 1 )  
- 
Y,v = C, w, Y,  = C, __ Y ,  = ’.( 2) Y,. c Na A 
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These three expressions illustrate the flexible nature of possible weights. The 
W ,  are relative weights, with E, W ,  = 1 .  The N, can be any arbitrary 
weights and we can assume that all N ,  > 0 and all W, = N,/C N ,  > 0. We 
also use N = C N,/A, the mean weight, and to the degree that all N,/N tend 
to be near I ,  the N,/C N, tend to I/A, and then F ,  tends to r, with little 
difference between the two means. Variation among the N ,  is a condition for 
a large difference (bias). The N ,  can be any kind of weights for the A units, 
and the numbers of elements in units is one frequent use, when the units are 
clusters of such elements (as in 7.5). For example, the units may be cities or 
counties, or schools or firms, or hospitals or institutions, etc. Then our 
primary interest lies in values of Y ,  that are mean values rather than 
aggregates-for example, in mean income rather than aggregate income in 
firms, or in rates of births and deaths per capita, rather than in total numbers 
of those vital events in the cities. Note that such mean unit values may be 
averages of element values, as well as direct measurements on the units 
themselves, such as the pollution or the altitude in the cities. 

The difference between the two means can be viewed as 

Y,). (7.4.12) 

This simply follows the definition of the covariance of the variable Ni and 
Y i ,  similarly to definitions of variances, such as o$ = (C r;L, - E)/A and 
oi = ( C N ;  - N2)/A. Also, we shall find it convenient to express all of 
these in relative terms. The coefficients of variation are C, = ov/Y,, and 
C,, = o,,/N. Then Cov(N,, Y,) = R,,o,,q = N~,R, ,C, ,C, ,  from the 
definition of R,,, = an~v/o,o, = Cov(N,, Y,)/o,,o,. Then the relative dif- 
ference between. weighted and unweighted means is 

(7.4.13) 

Thus the two means can differ emphatically when both R,, and C, are 
large, for any given variability C, of the Y ,  values. The weighted mean r,v 
will be relatively greater (or less) than the unweighted F, as the weights ( N ,  
or W,) are positively (or negatively) correlated with the Y ,  content of the A 
units. But a fair amount of relative variation C, in the weights is also needed 
for the difference (bias) to become important. The bias can be especially large 
in the special cases when the Y ,  = N, themselves, so that R ,  = 1 and the 
relative bias becomes C,CY = Ci. Of these there are examples in 7.4B and in 
7 .5 .  In 7.4B we used the symbols x for Y,, and C for Y w .  
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This treatment used parameters for all A units in the population, but 
applications to sampling of the units can be made readily, and often must be, 
as in 7.5. The individual values of the N ,  and Y ,  are assumed to be knowable 
constants, and it would be more complex to introduce variable measure- 
ments for them. 

7.5 OBSERVATIONAL UNITS OF VARIABLE SIZES 

This issue arises whenever entire groups of elements of greatly different sizes 
serve not only as selection units of sampling, but also as observational units. 
The group characteristic of each unit is observed and assigned a single score, 
which then can also be viewed as the value for all elements comprised within 
the units. First we shall note large possible differences between simple 
unweighted means Y, of the units and weighted element means Y , ,  and 
hence large possible biases if the wrong mean is used. Then we shall note a 
method of selection (with probability proportional to size, or PPS) that 
eliminates that bias conveniently and efficiently. It also leads to better 
methods for sampling elements, as we shall see. 

We emphasize the great variations of size that exist for many social groups 
that often are subjects of both observation and averaging. Units like cities 
and counties, universities and firms, hospitals and institutions can vary in 
size by factors of 100 or 1000 and can have coefficients or variations of size C,, 
of 5, 10, and more. Therefore if the correlation R,, between size and the study 
variable is not negligible, the difference between the weighted and un- 
weighted means can be large, because ( Y,,, - Yu)/ u, = RnJ,C,Cy represents 
the relative bias between them. This expression for the relative difference 
(bias) was developed (7.4.13) for the difference (r, - r,,) between the 
unweighted simple mean of units Y,, = C Y, /A ,  and the weighted mean 
Y,, = C W ,  Y ,  = X N ,  Y, /C N , .  Here the weights are generally the number 
of elements N ,  in the 0th unit. The variety of examples below illustrate the 
pervasive nature of the phenomenon. In each of these, Y, was first chosen 
automatically, but in each the mean Y,,, should be considered and preferred, I 
propose. 

1. Around 1957 (post-Sputnik) frightening statements appeared about 
science education in the United States: Half of the high schools offered 
no physics, a quarter no chemistry, and a quarter no geometry. It was 
later noted that, although backward schools were numerous indeed, 
they accounted for only 2 percent of all high school students. There 
were many more small schools than large schools, but the small 
proportion of large schools accounted for a large proportion of 
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students; this skewed distribution also results in a large C, . The 
curricula and facilities of large and small schools differ drastically; large 
schools present more physics, chemistry, etc., courses than small 
schools; hence large R ,  results. Thus presenting average school 
conditions gives a misleading picture of conditions facing the average 
student. If we want the latter, the former has a large relative bias: 
(TI,, - r,,)/t’, = (0.02 - 0.50)/0.50 = -0.96. The population ele- 
ments are students, and we are interested in their opportunities. The 
schools serve as both sampling units and observational units of the 
opportunity offered by the schools to their students. (Of course the 
proportion of students actually taking physics, chemistry, etc., a smaller 
number than could pose another variable and another problem.) 

2. For estimating the prevalence of swimming pools in a state’s high 
schools, r, gives the proportion of schools with pools. But the 
weighted proportion r,,, of students enrolled in schools with pools has 
more meaning; and y,,, is considerably larger than r,, because large 
schools have pools more often than small schools. 

3. The proportion r, of cities with museums is not as meaningful as the 
proportion r, of people who live in (or near) cities with museums. 

4. From a sample of manufacturing plants of a state, the heads were 
interviewed about plans to expand and to move. Instead of the simple 
percents Yu of the plants, data about plants that cover y,,, percent of 
employees had more meaning. The two means can diverge because 
large and small plants can differ about their plans. 

5 .  In some industry ru percent of firms operate with some defined type of 
organizational behavior, but a different percent Y,,, of employees is 
subject to it. I believe Y, is more important than Y,,. 

6. A national voluntary organization wants to know to what extent it is 
“metropolitan.” Only Y,, percent of the branches are in metropolitan 
areas, but a much larger percent y,,, of the members belong to them, 
because metropolitan branches tend to be much larger. 

7. In 1960,50 million people lived in 130 U.S. cities of more than 100,000; 
the average size of these cities was r,, = 0.39 million, but Yw, = 2.0 
million was the average for inhabitants. There are many small cities, 
but more people live in the large cities, with the relative 
bias = (2.0 - 0.39)/0.39 = 4.1. Incidentally, using the medians (0.19 
and 0.62) does not erase the difference. And of course, the contrast 
becomes starker if one uses a limit lower than 0.1 million. 

8. The average undergraduate class size in a university was only y, = 26, 
but the average student was in a class of size ylv = 65. The data of 
the school’s statistician were grossly misleading, by the ratio 
(65 - 26)/26 = 1.5. 
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9. The mean number of adults per household (US, 1960) was only 2.02, 
but the mean number of household members was Y ,  = 2.24 for the 
average adult. This difference is small, because the dispersion (C,) of 
numbers of adults is small. If we asked adults, “How many other adults 
live in your household?”, the average would be Y ,  - 1 = 1.24. 

The issue arises whenever the group characteristic of each unit is observed 
and assigned a single value, which is associated with all elements in the 
group. The sources of the group values may vary. The values may belong 
specifically to the groups, without direct source from their elements-for 
example, the climate, altitude, or pollution index of cities, their form of 
government, or the presence of museums. On the other hand, they may 
represent means of individual values, such as the mean income or the 
proportion of home owners for cities, and values arising directly from the 
elements, such as the population sizes and densities of the cities. From either 
group or individual origin, the measurements can always serve in the double 
capacity as group values and as values for all the elements in the groups [Kish 
1965bl. 

We may judge that the problem exists, that i t  is widespread and has many 
varieties, and that the difference Y,,, - Y,, may be large. In many situations 
equal weights are assigned to the units, and values of Y,, are computed 
automatically and mistakenly. In my opinion, in all the preceding examples 
the Y,, are needed and preferable. In my experience, researchers always 
preferred Y,, , but only after the difference was pointed out to them. That is 
the aim of this section, and to call attention to a better sample design for 
estimating Y,, . 

After choosing the proper mean come the questions about choosing 
preferred sample designs for estimating it. We are dealing with complete 
units of unequal sizes N,, but with some special features. First, evaluation of 
the Y,  requires only a single observation for each unit. Second, because Y ,  is 
the same for all N ,  elements in the units, their homogeneity is extreme 
(rho = I) .  Third, complete clusters are selected without subsampling. We 
now judge two alternative methods for selecting a sample of a units from a 
population of A units. 

I .  If a units are selected with equalprobability, f = a/A, for all the A units, 
the simple mean of the sample of u values of y, will be 

(7.5.1) 

and this will be an unbiased and efficient estimate of Y,. 

N,:  
But to avoid a bad bias, to estimate Y,,, i t  is necessary to weight they, with 



7.5 OBSERVATIONAL UNITS OF VARIABLES SIZES 241 

and this will be a “ratio mean” (4.7). Often the N ,  can be grossly unequal, 
and the weights will render this estimate inefficient, with a few large units 
dominating the estimate and its variance (and the variance of the variance). 
In this situation it is more appropriate to use PPS. 

2. If  the a units are selected with probabilities proportional to size (PPS), 
denoted by N, ,  the simple mean of the u values of y,, 

(7.5.3) .. 

YM, = C,Y,/U, 

is (essentially) an unbiased and efficient estimate of F,,,. On the other hand, a 
PPS sample may be used to estimate y,, with the y, weighted with l/N,: 

and this will also be a ratio mean, and usually not efficient. 
To summarize, for these situations Y,,, usually seems more meaningful, 

and PPS selections yield estimates that are simple and efficient. Where 
needed, estimates of y, may also be computed with weights l / N , .  Technical 
details and procedures for selecting with PPS from a population of unequal- 
sized units may be found elsewhere [Kish 1965a, Ch. 7, Section 11.6; also 
1965bl. However, we may note several points that may need attention and 
modification. (1) The unit variances and the unit costs may be different for 
large units than for small units; those differences may affect the comparisons 
of efficiencies for selection designs. But usually those factors will be small 
compared with the large effects of variation of N,.  (2) Often the exact sizes 
N ,  are unknown and some approximate measure of size Mos, must be used 
instead. Then weighting by N,/Mos, may be needed for Y,,,, but these ratios 
may differ little from some constant, and the variance will be increased only 
slightly. (3) Stratified selection will be used often, especially for PPS 
selections, and that reduces the variances for both selection methods. 

Interesting, special cases occur when the unit variable Y ,  coincides with 
the unit size N ,  itself. This occurs often, in preceding examples 7, 8, and 9, as 
answers to questions about the size of the unit to which the individual 
elements belong. The units are cities in example 7, university classes in 8, and 
households in 9. When Y ,  = N,,  we have J, = N = Z N , / A  and 

and the relative difference 
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r,, - r, 
- = c;. 
V 

(7.5.5) 

This also follows as a special case of ( r ,  - Y,) /Y,  = RnyC,,Cy (7.4.13), 
when r, = #, R, = I ,  and C,, = C,, all because Y ,  = N,. Clearly, when 
the relative variance C; is large, the relative difference is also great. For 
city size in example 7, we have (u,  - Yu)/Yu = (2.0 - 0.39)/0.39 
= 4.1. However, for household size, in example 9, we have only 
(2.24 - 2.02)/2.02 = 0.11, a small relative bias. In section 7.4B, in 
examples c, the “waiting times” are further examples of this problem, where 
time spans are units of variable sizes, comprising time measures [minutes] as 
the elements. On the other hand, in the examples a and b of Section 7.4B, the 
selection method would yield r,,, automatically; hence weighting with l / N ,  is 
needed to yield r,. 

Two important functions of design can be jointly fulfilled with PPS 
selection of groups (units) with unequal numbers N ,  of individuals (ele- 
ments). This occurs when, in addition to the weighted means ?, of units, we 
also want a subsample of elements n ,  from the sample of a units. The mean of 
n = C n,  subsampled elements 7 = C, Cpy,p/n is efficient for estimating the 
population mean Y of N elements (2.6). Because the group values j?, = 
Xpy,p/n, are based on approximately equal numbers n,  of elements, they 
have approximately equal variances; and this typically enhances the statis- 
tical efficiency of the selection of unit values. These sample values u, may be 
related to, and analyzed together with, other unit values measured directly on 
the units. 

Joint analyses of group variables Y,  and individual variables A’,, are also 
possible. We may regard each group value as possessing both kinds of 
variables, and a sample of n elements permits also their joint multivariate 
analysis. 

7.6 ON FALSIFIABILITY IN STATISTICAL DESIGN 

Statistical inference plays an important role in scientific inference. Hence 
statistics and statistical design cannot avoid the basic philosophical problem 
of empirical science: to make inferences to large populations and infinite 
universes and to make broad and lasting generalizations from samples of 
data that are limited in scope and time and that are also subject to random 
errors. We cannot avoid the basic philosophical questions of induction first 
posed clearly by David Hume in 1748. 

Since then many philosophers and scientists have written on this central 
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problem o f  t h e  philosophy of science, b u t  best and most  useful ( u p  t o  now) 
seems to be Popper’s view of “falsifiability and demarcation.” I have referred 
t o  “falsifiability” in several sections; a brief outline may be helpful for those 
n o t  already familiar with it. 

Popper’s seminal achievement has been to offer an acceptable solution to the 
problem of induction. In doing this he has rejected the whole orthodox view of 
scientific method outlined so far in this chapter and replaced it with another. 

Popper’s solution begins by pointing to a logical asymmetry between 
verification and falsification. To express it in terms of the logic of statements: 
although no number of observation statements reporting observations of white 
swans allows us logically to derive the universal statement “All swans are 
white”, one single observation statement, reporting one single observation of a 
black swan, allows us logically to  derive the statement “Not all swans are 
white.” In this important logical sense empirical generalizations, though not 
verifiable, are falsifiable. This means that scientific laws are testable in spite of 
being unprovable: they can be tested by systematic attempts to refute them. 
[Magee 1973, pp. 222-2231 

Popper himself introduces his view of “Falsifiability as a Criterion of 
Demarcat ion” thus: 

The criterion of demarcation inherent in inductive logic is equivalent to the 
requirement that all the statements of empirical science (or all “meaningful” 
statements) must be capable of being finally decided, with respect to their truth 
and falsity. This means that their form must be such that to verifv them und to 
falsify them must both be logically possible. 

Now in my view there is no such thing as induction. Thus inference to 
theories, from singular statements which are “verified by experience” (whatever 
that may mean), is logically inadmissible. Theories are, therefore, never 
empirically verifiable. 

But 1 shall certainly admit a system as empirical o r  scientific only if it is 
capable of being tested by experience. These considerations suggest that not the 
Verifiability but the falsifability of a system is to  be taken as a criterion of 
demarcation. In other words: I shall not require of a scientific system that it 
shall be capable of being singled out, once and for all, in a positive sense; but I 
shall require that its logical form shall be such that it can be singled out, by 
means of empirical tests, in a negative sense: it must be possiblefor an empirical 
scientific system to be refuted by experience. 

My proposal is based upon an asymmetry between verifiability and 
falsifiability; an asymmetry which results from the logical form of universal 
statements. For these are never derivable from singular statements, but can be 
contradicted by singular statements. [Popper 1968, 6.11 
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Furthermore, and most important for the advance and demarcation of 
good science: “What we want are statements of a high informative content, 
and therefore low probability, which nevertheless come close to the truth. 
And it is precisely such statements that scientists are interested in. The fact 
that they are highly falsifiable makes them also highly testable: informative 
content, which is in inverse proportion to probability, is in direct proportion 
to testability” [Magee 1973, p. 361. Magee’s small volume gives an extremely 
clear introduction and Salmon’s book [ 19671 a more technical presentation of 
these philosophical views. 

For statistical design of social research our tasks are even tougher than 
separating white and black swans. Our “swans” come (metaphorically) in all 
shades of gray from white to black and often observed through a haze. 
“Statistics and statisticians deal with the effects of chance events on empirical 
data. Because chance, randomness, and error constitute the very core of 
statistics, we statisticians must include chance effects in our patterns, plans, 
designs, and inferences” [Kish 19821. For example, statistics must distinguish 
the higher risks of death from lung cancer, heart attacks, etc., for smokers, 
though nonsmokers are also subject to those risks and many smokers die 
from other causes. Furthermore, many statistical problems of research are 
more complex than the effects of cigarette smoking. 

Many scientists and statisticians, wrestling with problems of induction, 
have made statements resembling parts of Popper’s falsification view. 
Fisher’s espousal of multifactor designs is an excellent example (Section 1.3); 
see also examples in “Strong inference” by Platt [1964]). Such parallel 
statements by others support Popper’s view, rather than detract from his 
contribution. But neither in those statements nor in various philosophers’ 
discussions could I find examples of the down-to-earth problems of statistical 
designs described in the following paragraphs. Yet for these problems, the 
principles of falsifiability present a unified view that I welcome. 

A. Internal Replication (3.1B). If treatments and observations are intro- 
duced into several communities that are similar (adjacent) in resources, 
culture, organization, and administration, little additional corroboration is 
gained from the extra effort expanded on the replications. But if the 
replications are spread so as to increase (maximize) dissimilarities over the 
range of variables, over diverse conditions, over the entire signified popu- 
lations of inference, then greater corroboration can be obtained from 
successful exposures to the severe tests of falsification. It is true that for 
evaluation research the range and population may have to be limited to the 
“dominion” of the specified program (3.7). 

B. Situations resembling A above 
also occur for testing the effects of treatments over time, when effects may 

Curves of Response Over Time (3.6). 
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well vary over time, but more than mere short-range e5ects are sought. 
Consider, for example, the very different effects on Romania’s population 
growth, first one year after, then 10 years after, and 16 years after their 1966 
law abolishing easy abortion. 

C .  Control Strategies (4.1). In observational studies, the difference 
( F a  - j h )  between treatments A and B represents a theory about the source 
of that difference. But that theory must compete with others represented by 
uncontrolled disturbing variables. Then introducing controls over those 
disturbances (can the difference survive all those controls?) represents tests of 
falsifiability, and surviving the most severe feasible tests leads to increasing 
corroboration for that theory. 

D. Multifactor Experimental Designs. R A Fisher’s argument (1.3) for 
multifactor designs has basically much in common with those for multiple 
controls mentioned earlier. Yet it is even broader in that multifactor designs 
may begin with several factors and with interactions between them, in mutual 
competition for “corroboration.” The basic view of severe and broad tests 
against falsification is similar. Note that the bold view of this scientist- 
statistician predated those of the philosopher, but the two converge to the 
same basic point, in my mind at least. Note that Fisher was also fighting 
against current views of induction, as Popper was. Fisher’s ideas were further 
evolved in experimental design, especially in “response surface” analysis 
[Box, Hunter, and Hunter 1978, Ch.151. 

Remark. The views I am about to introduce pertain as much to examples A, 
B, C, D as to E, F, G, H. I fear to introduce this bold modification or relation 
of “falsifiability,” which I have not found explicitly in the philosophical 
presentations. However, in daily, ordinary, “normal science” and in statis- 
tical design for research, we work less often with the “falsifiability” of 
bold theories than with “critical estimates” (to coin a term) for important 
variables. For example, we estimate how much cigarette smoking increases 
death rates from lung cancer and from heart failures, by what factor and 
what percentage. Or we estimate the dramatic convergence toward “zero 
population growth” of modern industrialized nations (both Western and 
Eastern Europe, North America, Australia, Japan, etc.) in our generation. 
This concentration on estimation of important parameters is common not 
only in social research, but also in statistics for the biological, chemical, and 
physical sciences. 

In statistics there is close correspondence between tests of significance and 
probability (confidence) intervals for estimates. Similarly, for statistical 
design a strong relation also exists between testing for “falsifiability” and 



246 7. SEVERAL DISTINCT PROBLEMS OF DESIGN 

“critical estimation” of important (crucial?) parameters. Many of the daily 
problems of statistical designs can be better understood in terms of 
estimation. Yet these can also be enriched with the falsifiability view. The 
problems of representation (1.1 - 1.4) enter here also, especially if we consider 
estimation not only for the entire population, but also for critical domains 
within it (2.3). Now we return to examples with this two-fold view in mind. 

E. This is a rich 
area to approach with the falsifiability view, because usually the special 
strength of each method-randomized treatments, representation, and 
realism-cannot be combined into the same research design. For example, a 
randomized experiment of lifetime smoking-nonsmoking habits cannot be 
built into a randomized selection of the U.S. population. But the effects of 
cigarette smoking have been shown with all three methods, including animal 
experiments, human surveys, and controlled groups [Cornfield 19591. Strong 
corroboration results from falsifying different competing causal theories with 
each method, whereas the smoking-cancer link withstands the varied tests of 
falsification with all three methods. The Salk polio vaccine trial also involved 
the three-fold test [Meier 19721. The advantages of three-fold (or two-fold) 
tests were already argued in Section 1.3, yet the falsifiability view seems to 
provide a firmer basis for the argument. 

Experiments, Surveys, and Controlled Observations (1.3). 

F. StratiJication. Stratification is widely used in survey sampling to ensure 
good representation in samples of identifiable subpopulations. Reducing 
variances appears as the chief justification in sampling theory, and represent- 
ing domains for analysis (2.3) should also be considered. But even more 
important in practice, I believe, is the aim of controlling for potentially 
disturbing variables, although this is seldom made explicit. This aim looms 
large, especially for large, multipurpose samples and for cases where one does 
not know which of many potential stratifying variables may be the most 
important. Such situations lead to using several, even many, stratifiers and to 
“multiple stratification” [Kish and Anderson 1978; Kish 1965, 12.81. This 
resembles the use of controls in C above, and its basis in tests of falsification 
is similar, though “critical estimation” may better fit the context of survey 
sampling. Without stratification, the disturbing variables could affect the 
survey results. In experimental designs “blocking” serves similar purposes. 

G .  Randomization of Treatments (1.1-1.4, 3.2). Randomization of treat- 
ments serves, when we can use it, as the most powerful method for 
eliminating disturbing causal factors, which could compete with theories 
based on experimental treatment. Randomization provides severe tests 
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against misleading results. After thorough investigations of social and 
medical innovations, Mosteller [1977a] wrote with sarcasm, “the less well 
controlled the study, the more enthusiasm the investigators have for the 
operation . . . nothing improves the performance of an innovation more than 
the lack of controls” [see also Gilbert, Light, and Mosteller 19751. 

H. Representation over the Population (1.1-1.4,3.1). Comparison of two 
methods, representative probability sampling versus internal replication (A), 
also illustrates the differences between tests of falsification and critical 
estimation. When the estimates are similar over all replications and over the 
entire population, both designs perform well; and internal replication may be 
more feasible, less costly, and more efficient. But when faced with different 
estimates, representative samples facilitate estimates for many kinds of 
domains, including those not covered by internal replications (2.3,3.1). They 
also yield global averages (over all domains) that a few internal replications 
cannot yield, but which are often needed. 

I. Publication of Contradictory Results. “On rare occasions a journal can 
publish two research papers back-to-back, each appearing quite sound in 
itself, that come to conclusions that are incomparable in whole or in part. 
Such a conjunction can put critical issues involving research methods and 
interpretations in unusually sharp focus. I recall that the Journal published 
such papers in 1978 and 1982, each with a helpful editorial. In this issue we 
have another such pair-and both appear to me methodologically sound. 
Each cites prior studies that support its conclusions and others that do not; 
neither is alone” [Bailar 19851. 

I greet the wisdom and courage of this journal for printing both articles, 
but some of my friends disagree, and I invite readers to ponder and discuss. 
Some believe it is embarrassing for science and confusing for the public to 
reveal the contradiction. Should the journal wait for further evidence? But 
checks have already found both reports to be methodologically sound; and 
each is already both supported and contradicted by other studies. 

Would it  be better to have the two results appear in two different journals? 
In two different countries (such as the United States and Cuba)? On two 
different continents, say one in Japan, Indonesia, or Egypt? That would 
allow for speculations about sources of human diversity. Such differences 
allow conflicting results in human and social research to coexist without clear 
contradiction. 

I believe that such contradiction is productive and at the heart of 
falsifiability. Out of such falsifications arise stronger theories-to be tested 
anew. 



Problems 

Professors can choose some of these problems for class assignments and 
examinations. There was no attempt to avoid redundancy and overlaps 
between questions and some are alternatives. Nor do they cover all subjects 
included in or related to the contents. They are mostly of the “describe” and 
“discuss” essay kind, mostly without unique answers. Professors may amend 
them with more specific targeting instructions, or may write their own 
versions. 

Chapter 1 

1 a. 

lb. 

1 c. 

Id. 

le. 

If. 

Compare, evaluate, or rank the three major criteria of research designs. 
Can you suggest and justify one (or more) others? Empirical situations 
are welcome. 
Satisfying all three criteria would be best, but difficult. Describe 
situations ( I )  when that may be feasible; (2) when some specified 
compromise of all three seems best; and (3) when the choice of each 
single criterion seems preferable or necessary. 
Describe advantages and drawbacks for each of the major types of 
design in light of the three criteria (and others?), illustrated with several 
empirical situations. 
Discuss how and why representation with probability sampling may be 
more important and feasible either for small or for large samples. 
Are tests of significance applicable to survey research? Describe the 
controversy and add your comments. 
Discuss probability sampling as a sampling method and compare it with 
alternatives. 

248 
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Chapter 2 

2a. 

2b. 

2c. 

2d. 

2e. 

2f. 

2g. 

2h. 

Describe and discuss the four populations of survey sampling. Also 
describe and discuss reasons for the three gaps between them, with one 
or more examples of realistic situations. 
Discuss effects of complex samples on descriptive statistics, on inferen- 
tial statistics, and on subclasses. 
Discuss and compare the effects of stratification and clustering on 
means and other statistics. 
Discuss the design effects on statistics of crossclass means and their 
comparisons. 
Discuss the nature and magnitude of the effects of proportionate 
stratified element sampling. 
Discuss design effects caused by clustering on means of entire samples, 
on means of crossclasses, and on differences of crossclass means. 
Discuss real obstacles and other objections to probability sampling for 
analytical studies. 
Compare and discuss these two statements: 
(a) Representing specific populations with probability sampling is 

important for descriptive statistics, but not for discovering funda- 
mental relationships between variables. (Synthetic restatement of 
a common argument.) 
“ . . . it is not true that one can uncover ‘general’ relationships by 
examining some arbitrarily selected population.. . . There is no 
such thing as a completely general relationship which is indepen- 
lent of population, time, and space. The extent to which a 
relationship is constant among different populations is an empir- 
ical question which can be resolved only by examining different 
populations at different times in different places” [McGinnis 
19581. 

(b) 

Chapter 3 

3a. 

3b. 

3c. 

For studies in single 
their advantages 
Discuss reasons and 

Discuss the of the four basic 
restricted sites. 

modules. 

reasons for their frequent use, 

replications based on a few 
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3d. 

3e. 

3f. 

3g. 

3h. 

3i. 

3j. 

Describe and discuss the composition of the four basic modules with 
their cost x variance factors and their bias type characteristics. 
Describe your favorite basic design among the five given or suggest a 
new one. You may discuss in general and/or for a defined situation. 
Discuss the sources and major types of bias. Suggest omissions(s) or 
mistake(s) in my list. 
Discuss the need for and problems of measuring delayed response 
effects. 
How does evaluation research (ER) differ from other research? Add 
your own opinions. 
Experts in the Treasury Department are quietly discussing the possi- 
bility of a temporary tax reduction to combat a recession, by releasing 
such funds into the hands of consumers. The question is how much will 
be spent rather than saved by consumers. It is desired to obtain some 
interviews on buying intentions before any plans are released to the 
public, and some after the tax reductions are announced and publicized 
widely. Discuss: 
(a) Should the before and after interviews be made on the same 

respondents, on different respondents, or on some of each? 
(b) Should the samples consist of national cross sections; be confined 

to a typical, homogeneous city or county; or be taken in six or 
eight counties, cities, or metropolitan areas, chosen to represent 
diverse regional, size, and economic classes? 

A large organization is divided into about 60 large units, separate plants 
and large divisions, with rather autonomous managements. It desires to 
conduct research on a moderate scale on the effects on production and 
satisfaction of a conversion from a hierarchical to a more democratic 
(decentralized) method of management. Discuss the advantages and 
drawbacks of three alternative research plans. 
(a) Introduce a strong version of the new method into one entire large 

unit. 
(b) Introduce necessarily weakened versions of the method into work 

sections, with matched controls, within several of the large units. 
(c) In a good cross-section sample of the entire organization, conduct 

long and thorough interviews on the attitudes toward the possible 
introduction of the new methods. 

Chapter 4 

4a. Discuss the strategical decisions for effective control of disturbing 
variables. 
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4b. Discuss control by analysis with subclasses as to its uses, advantages, 
deficiencies. 

4c. Describe the methods and problems of case-by-case matching. 
4d. Describe alternative methods for matching subclasses. 
4e. Discuss standardization as control for disturbing variables. 
4f. Describe the methods and purposes of different indexes. 
4g. Discuss control by covariance analysis and by residuals. 
4h. Discuss the rationale and methods of adjustments with ratio estimates. 
4i. Some of the adult population of 10 large cities, near which there are 

large atomic installations, were thought to be worried about radiation 
hazards. A sample of each of these cities is to be interviewed. The 
attitudes of the inhabitants should be contrasted with a control 
population, to ascertain differences in the level and prevalence of 
anxiety between the 10 “treatment” cities and the control population. 
Discuss reasons for choosing one of these alternatives as controls. 
(a) A sample of the rest of the entire country. 
(b) One control city, paired with each of 10 treatment cities, chosen by 

careful judgment as most resembling it. 
(c) Three cities chosen at random from each of 10 classes of cities, 

each class broadly defined by size, region, etc., from the entire 
country and containing 1 of the 10 cities. 

A new vaccine against the common cold is available for a field trial of 
5000 people over 10 years of age. Discuss these questions about the 
design: 
(a) Should we use for control (1) nothing; (2) before-and-after 

observations on the 5000 vaccinated; (3) 5000 controls with no 
vaccines; (4) 5000 people with a placebo; (5) 5000 people with 
placebo, and before-and-after observations on all 10,000; (6 )  5000 
persons in a “double-blind’’ clinical trial with placebos; (7) any 
other design? 

(b) Should the sample consist of (1) 5000 individually selected per- 
sons; (2) 2000 families averaging 2.5 persons each? 

(c) Should the sample consist of (1) national probability sample; (2) 4 
to 12 places, of contrasting characteristics on factors considered 
relevant by experts, such as climate, size, smoke, socioeconomic 
status, national origin? (3) Should these places be large cities, city 
tracts, suburbs, small towns, or one Army post? 

(d) How many observations should be made on each individual and 
over how long a period? 

Cost factors are (1) cost of vaccine, cost of placebo; (2) cost of reaching 

4j. 
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dwelling; (3) cost of individual observation; (4) cost of cooperation from 
county medical society. 

Chapter 5 

5a. Compare the relative advantages of samples, censuses, and registers. 
Give examples for defined situations. Speculate about future develop- 
ments for these three methods. 

5b. Discuss samples as parts of censuses for obtaining special, richer 
variables. Compare this method both with complete censuses and with 
independent samples. 

5c. Describe uses of census data for sample surveys. 
5d. Comment on census data as bases for separate analysis by researchers. 

Chapter 6 

6a. 

6b. 

6c. 
6d. 

6e. 

6f. 

6g. 

Describe your choices of reference, collection, and reporting periods for 
a series of objectives-e.g., births, illnesses, handicaps, income, acci- 
dents, crime. 
Discuss purposes in defined situations when each of the designs listed in 
Table 6.2.1 would serve best. 
Discuss a compromise design for a multipurpose situation you describe. 
A survey in 1955 of a large city is to be compared with another in 1988. 
What population changes do you expect and how do you propose to 
deal with them? 
Compare the costs, benefits, and problems of a periodic panel with 
distinct samples of similar sizes. 
Compare the costs, benefits, and problems of a periodic panel with a 
retrospective study over the same time interval. 
Discuss problems of longitudinal studies of communities, in the light of 
this passage from “Village in the Vaucluse” about a “typical” stable 
trend village of 779 people wylie  1964, p. 3521, an anthropological and 
literary gem. “. . . Peyrane life persists amid all the economic, tech- 
nological and architectural change: human relations in the village are 
about the same. . . . But of all the individuals living in Peyrane during 
the thirteen year period from 1946 to 1959, how many lived there for all 
thirteen years? Only 275! And of these, 137 were not born in Peyrane! 
At this point I began to wonder what I mean when I refer to ‘the people 
of Peyrane’.” 
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Chapter 7 

7a. 

7b. 

7c. 

7d. 
7e. 

7f. 

For each of the alternative methods for computing sampling errors 
describe and discuss defined situations where it seems appropriate. 
Describe how you would select the sample and compute sampling 
errors. 
Discuss the uses of analogies and models for imputing sampling errors 
from some samples to others. 
What statistics other than differences (X - J )  can be used for compara- 
tive analysis of data? 
Discuss the need, possibilities, and methods for multipurpose designs. 
Discuss several problems of selection design that lead to biases or to 
weighting. 
Describe actual problems of organizations or groups of different sizes, 
problems of selection design, and solutions. 
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